首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
K Lohner  A F Esser 《Biochemistry》1991,30(26):6620-6625
The thermotropic behavior of purified human complement protein C9 was investigated by high-sensitivity differential scanning calorimetry. When dissolved in physiological buffers (pH 7.2, 150 mM NaCl), C9 underwent three endothermic transitions with transition temperatures (Tm) centered at about 32, 48, and 53 degrees C, respectively, and one exothermic transition above 64 degrees C that correlated with protein aggregation. The associated calorimetric enthalpies of the three endothermic transitions were about 45, 60, and 161 kcal/mol with cooperative ratios (delta Hcal/delta HvH) close to unity. The total calorimetric enthalphy for the unfolding process was in the range of 260-280 kcal/mol under all conditions. The exothermic aggregation temperature was strongly pH dependent, changing from 60 degrees C at pH 6.6 to 81.4 degrees C at pH 8.0, whereas none of the three endothermic transitions was significantly affected by pH changes. They were, however, sensitive to addition of calcium ions; most affected was Tm1 which shifted from 32 to 35.8 degrees C in the presence of 3 mM calcium, i.e., the normal blood concentration. Kosmotropic ions stabilized the protein by shifting the endothermic transitions to slightly higher temperatures whereas inclusion of chaotropic ions (such as choline), removal of bound calcium by addition of EDTA, or proteolysis with thrombin lowered the transition temperatures. Previous studies had indicated the formation of at least three different forms of C9 during membrane insertion or during heat polymerization, and it is suggested that the three endothermic transitions reflect the formation of such C9 conformers. Choline, which is present at high concentrations on the surface of biological membranes, and calcium ions have the ability to shift the transition temperatures of the first two transitions to be either close to or below body temperature. Thus, it is very likely that C9 is present in vivo in a partially unfolded state when bound to a membrane surface, and we propose that this facilitates membrane insertion and refolding of the protein into an amphiphilic conformation.  相似文献   

2.
Horseradish peroxidase has been shown to be a metalloprotein in which calcium contributes to the structural stability of the protein. Isoenzyme C and A contain 2.0 and 1.4 moles calcium/mole enzyme, respectively, which can be removed by treatment with guanidine hydrochloride and EDTA. Calcium-free isoenzyme C, but not isoenzyme A, reconstitutes upon addition of calcium and regains enzymatic activity. Free calcium readily exchanges with isoenzyme C, but only to a small extent with isoenzyme A. In addition the role of calcium in maintaining molecular conformation is evidenced by the effects of calcium removal from the isoenzyme C on the thermal stability of the protein.  相似文献   

3.
Stability and unfolding of mammalian and microbial α-amylases have been intensively investigated. However, there is only limited information available on the structural stability of plant α-amylases, namely of the two isoenzymes from barley AMY1 and AMY2, of the α-amylase from mung bean (Vigna radiata), and of the α-amylase from malted sorghum (Sorghum bicolor). We report here the stability of soyabean α-amylase (GMA), against elevated temperatures and chemical denaturants (GndHCl) by employing circular dichroism and fluorescence spectroscopy. Since it is well-known that calcium ions play a crucial role for enzymatic activity and stability of a-amylases, we performed our studies with calcium bound and calcium free GMA. The thermal unfolding transition temperature decreased from 72°C for calcium saturated samples to 57°C for the case of calcium depleted GMA. Similarly, the GndHCl transition concentration was lowered from 0.70 M for calcium bound GMA to 0.41 M in the absence of calcium. Thermal unfolding of GMA irreversible due to aggregation of the unfolded state. GMA unfolded in 6 M GndHCl shows high degree of reversibility after diluting the unfolded enzyme in native buffer containing 7 M glycerol. Furthermore, the refolded enzyme showed 93% of activity.  相似文献   

4.
The binding of calcium and terbium to purified chick vitamin D-dependent intestinal calcium-binding protein was studied by terbium fluorescence, circular dichroism, and intrinsic protein fluorescence techniques. Calcium-binding protein bound, with high affinity, at least 3 mol of terbium/mol of protein; numerous low affinity terbium-binding sites were also noted. The three highest affinity sites were resolved into one very high affinity site (site A) and two other sites (sites B and C) with slightly lower affinity. Resonance energy transfer from tryptophan residues to terbium occurred only with site A. This site was filled before sites B and C. Competition experiments in which calcium was used to displace terbium bound to the protein showed that larger amounts of calcium were needed to displace terbium from site A than from sites B and C. Energy transfer from terbium to holmium indicated that the terbium-binding sites (B and C) were located close to each other (about 7-12 A) but were distant (greater than 12 A) from site A. The addition of EDTA to calcium-binding protein resulted in a 25% decrease in intrinsic protein fluorescence, suggesting a conformational change in the protein. The titration of EDTA-treated calcium-binding protein with calcium resulted in recovery of intrinsic protein fluorescence. A reversible calcium-dependent change in the ellipticity of calcium-binding protein in circular dichroism experiments was also seen. These observed properties suggest that vitamin D-dependent chick intestinal calcium-binding protein behaves in a manner similar to other well-known calcium-binding regulatory proteins.  相似文献   

5.
Infrared spectroscopy (IR) and differential scanning calorimetry (DSC) were used to study the biophysical properties of the PKCepsilon-C2 domain, a C2 domain that possess special characteristics as it binds to acidic phospholipids in a Ca2+-independent manner and no structural information about it is available to date. When the secondary structure was determined by IR spectroscopy in H2O and D2O buffers, beta sheet was seen to be the major structural component. Spectroscopic studies of the thermal denaturation in D2O showed a broadening in the amide I' band starting at 45 degrees C. Curve fitting analysis of the spectra demonstrated that two components appear upon thermal denaturation, one at 1623 cm(-1) which was assigned to aggregation and a second one at 1645 cm(-1), which was assigned to unordered or open loop structures. A lipid binding assay has demonstrated that PKCepsilon-C2 domain has preferential affinity for PIP2 although it exhibits maximal binding activity for phosphatidic acid when 100 mol% of this negatively charged phospholipid was used. Thus, phosphatidic acid containing vesicles were used to characterize the effect of lipid binding on the secondary structure and thermal stability. These experiments showed that the secondary structure did not change upon lipid binding and the thermal stability was very high with no significant changes occurring in the secondary structure after heating. DSC experiments demonstrated that when the C2-protein was scanned alone, it showed a Tm of 49 degrees C and a calorimetric denaturation enthalpy of 144.318 kJ x mol(-1). However, when phoshatidic acid vesicles were included in the mixture, the transition disappeared and further IR experiments demonstrated that the protein structure was not modified under these conditions.  相似文献   

6.
We have characterized stability and conformational dynamics of the calcium depleted D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli. The structural stability of the protein was investigated by steady state and time resolved fluorescence, and far-UV circular dichroism in the temperature range from 20 degrees C to 70 degrees C. We have found that the absence of the Ca(2+) ion results in a significant destabilization of the C-terminal domain of the protein. In particular, the melting temperature decreases by about 10 degrees C with the simultaneous loss of the melting cooperativity. Time resolved fluorescence quenching revealed significant loosening of the protein when highly shielded Trp residue(s) became accessible to acrylamide at higher temperatures. We have documented a significant stabilizing effect of glucose that mostly reverts the effect of calcium, that is, the thermal stability of the protein increases by about 10 degrees C and the melting cooperativity is restored. Moreover, the protein structure remains compact with low amplitude of the segmental mobility up to high temperatures. We have used molecular dynamics to identify the structural feature responsible for changes in the temperature stability. Disintegration of the Ca(2+)-binding loop seems to be responsible for the loss of the stability in the absence of calcium. The new insights on the structural properties and temperature stability of the calcium depleted GGBP contribute to better understanding of the protein function and constitute important information for the development of new biotechnological applications of this class of proteins.  相似文献   

7.
Kar K  Kishore N 《Biopolymers》2007,87(5-6):339-351
A combination of spectroscopic, calorimetric, and microscopic studies to understand the effect of hydroxyproline on the thermal stability, conformation, biological activity, and aggregation of proteins has been investigated. Significantly increased protein stability and suppression of aggregation is achieved in the presence of hydroxyproline. For example, exceptional increase in the thermal stability of lysozyme up to 26.4 degrees C and myoglobin up to 31.8 degrees C is obtained in the presence of hydroxyproline. The increased thermal stability of the proteins is observed to be accompanied with significant rise of the catalytic activity. Hydroxyproline is observed to prevent lysozyme fibril formation in vitro. Fluorescence and circular dichroism studies indicate induction of tertiary structures of the studied proteins in the presence of hydroxyproline. Preferential hydration of the native state is found to be crucial for the mechanism of protein stabilization by hydroxyproline. We compared the effect of hydroxyproline to that of proline and observed similar increase in the activity and suppression of protein aggregation. The results demonstrate the use of hydroxyproline as a protein stabilizer and in the prevention of protein aggregation and fibril formation.  相似文献   

8.
Brockmeier A  Williams DB 《Biochemistry》2006,45(42):12906-12916
Calnexin is a membrane-bound chaperone of the endoplasmic reticulum (ER) that participates in the folding and quality control of newly synthesized glycoproteins. Binding to glycoproteins occurs through a lectin site with specificity for Glc1Man9GlcNAc2 oligosaccharides as well as through a polypeptide binding site that recognizes non-native protein conformations. The latter interaction is somewhat controversial because it is based on observations that calnexin can suppress the aggregation of non-glycosylated substrates at elevated temperature or at low calcium concentrations, conditions that may affect the structural integrity of calnexin. Here, we examine the ability of calnexin to interact with a non-glycosylated substrate under physiological conditions of the ER lumen. We show that the soluble ER luminal domain of calnexin can indeed suppress the aggregation of non-glycosylated firefly luciferase at 37 degrees C and at the normal resting ER calcium concentration of 0.4 mM. However, gradual reduction of calcium below the resting level was accompanied by a progressive loss of native calnexin structure as assessed by thermal stability, protease sensitivity, intrinsic fluorescence, and bis-ANS binding. These assays permitted the characterization of a single calcium binding site on calnexin with a Kd = 0.15 +/- 0.05 mM. We also show that the suppression of firefly luciferase aggregation by calnexin is strongly enhanced in the presence of millimolar concentrations of ATP and that the Kd for ATP binding to calnexin in the presence of 0.4 mM calcium is 0.7 mM. ATP did not alter the overall stability of calnexin but instead triggered the localized exposure of a hydrophobic site on the chaperone. These findings demonstrate that calnexin is a potent molecular chaperone that is capable of suppressing the aggregation of substrates through polypeptide-based interactions under conditions that exist within the ER lumen.  相似文献   

9.
Jas GS  Kuczera K 《Proteins》2002,48(2):257-268
In the course of aging or under conditions of oxidative stress, methionine residues of calmodulin undergo oxidation, leading to loss of biological activity of the protein. We have performed free-energy simulations of the effects of C-terminal methionine side-chain oxidation on the properties of calmodulin. The simulation results indicate that oxidation should have a destabilizing effect on all three protein functional states: calcium free, calcium loaded, and with both calcium and target peptide bound. Because the different states are destabilized by different amounts, this leads to a more complex pattern in the observable effects on protein thermal stability, calcium affinity, and binding of a target peptide. The influence of oxidation on the free energy of CaM unfolding is estimated by comparing the free-energy cost of oxidizing a Met residue in a Gly-Met-Gly peptide and in the protein. The protein thermal stability of the oxidized forms is lowered by a moderate amount 1-3 kcal/mol, in qualitative agreement with experimental results of 0.3 kcal/mol. The calculated changes in affinity for calcium and for the target peptide show opposing trends. Oxidation at position 144 is predicted to enhance peptide binding and weaken calcium binding, whereas oxidation at 145 weakens peptide binding and enhances affinity for calcium. The lower affinity of Met 145-oxidized calmodulin toward the target peptide correlates with experimentally observed lowering of calmodulin-activated Ca-ATPase activity when oxidized calmodulin from aged rat brains is used. Thus, our simulations suggest that Met 145 is the oxidation site in the C-terminal fragment of calmodulin. The microscopic mechanism behind the calculated free energy changes appears to be a greater affinity for water of the oxidized Met side-chain relative to normal Met. Structures with Met exposed to solvent had consistently lower free energies than those with buried Met sidechains.  相似文献   

10.
When EAC43b were treated with heated serum in EDTA, reactivity with bovine conglutinin appeared rapidly, even at 0 degrees C, and almost simultaneously with the loss of C3b rosetting capacity. At the time conglutinability first appeared, there was no detectable decrease in I-A or hemolytic C3 activity, and no detectable C3 antigen release from the cells. With prolonged exposure to heated serum in EDTA, I-A (immune adherence) and hemolytic C3 activity were lost. If this exposure was at 37 degrees C, C3 antigen became strongly detectable in the supernatant fluid, and eventually conglutinability was markedly reduced or lost, whereas C3d rosettes were unaffected. We suggest that bovine conglutinin reacts with some early product of C3b degradation, rather than with C3d, and propose that this intermediate be designated C3k. We have developed a semi-quantitative assay for bovine conglutinin, utilizing a Coulter Counter to register the decrease in total particles due to red cell aggregation. By using this method, we have detected conglutination with mouse complement (C) as well as with that from man and the guinea pig.  相似文献   

11.
Two different radiographic contrast media (RCM), iothalamate and iodipamide, induced the activation of several complement (C) components in normal, genetically C2-deficient and agammaglobulinemic human sera in vitro. This activation was dose dependent and demonstrable by a reduction in whole C as well as C4, C2, C3, and C5 hemolytic activities. C6, C8, and C9 hemolytic activities were unaffected. Concommitant with the loss of C3 hemolytic activity was the appearance of C3 proteolytic cleavage products that were identified by immunoelectrophoresis. Both the loss of C3 hemolytic activity and the production of C3 fragments occurred in the presence of 10 mM EDTA, indicating RCM-induced C3 cleavage occurred without participation of the multicomponent C3/C5 convertases of either the classical or alternative C pathways. Furthermore, loss of C3 hemolytic activity was not due to the direct alteration of the C3 molecule by RCM because purified C3 was unaffected upon incubation with RCM at a concentration that induced 80% reduction in the C3 hemolytic activity in normal human serum. Serum samples obtained from 40 patients, before and 30 min after undergoing i.v. pyelography, revealed no significant change in total hemolytic C activity; 34 patients received sodium and methylglucamine diatrizoate and six received sodium iothalamate. Hemolytic C3 levels were also determined for the six patients before and 30 min after administration of sodium iothalamate and no significant change in activity was detectable.  相似文献   

12.
Soluble mitochondrial ATPase (F1) from beef heart prepared in this laboratory contained approximately 1.8 mol of ADP and 0 mol of ATP/mol of F1 which were not removed by repeated precipitation of the enzyme with ammonium sulfate solution or by gel filtration in low ionic strength buffer containing EDTA. This enzyme had full coupling activity. Treatment of the enzyme with trypsin (5 mug/mg of F1 for 3 min) reduced the "tightly bound" ADP to zero, abolished coupling activity, but had no effect on the ATPase activity, stability, or membrane-binding capability of the F1. When the trypsin concentration was varied between 0 and 5 mug/mg of F1, tightly bound ADP was removed to varying degrees, and a correlation was seen between amount of residual tightly bound ADP and residual coupling activity. Gel filtration of the native F1 in high ionic strength buffer containing EDTA also caused complete loss of tightly bound ADP and coupling ability, whereas ATPase activity, stability, and membrane-binding capability were retained. The ADP-depleted F1 preparations were unable to rebind normal amounts of ADP or any ATP in simple reloading experiments. The results strongly suggest that tightly bound ADP is required for ATP synthesis and for energy-coupled ATP hydrolysis on F1. The results also suggest that ATP synthesis and energy-linked ATP hydrolysis rather than involving one nucleotide binding site on F1, involve a series or "cluster" of sites. The ATP hydrolysis site may represent one component of this cluster. The results show that nonenergy-coupled ATP hydrolysis on F1 can occur in the absence of tightly bound ADP or ATP.  相似文献   

13.
We isolated protein C from a barium citrate-adsorbed fresh plasma and human factor IX concentrate by immunoaffinity chromatography on a column of Sepharose coupled with monoclonal antibodies to protein C. The antibodies used were conformation-specific monoclonal antibodies to the calcium-induced structure of protein C. Protein C was bound to antibodies coupled with Sepharose in the presence of calcium ions and was eluted with EDTA. This immunopurification resulted in a 13,000-fold purification of the fully functional zymogen from plasma. The immunoaffinity-isolated protein C was found to have higher amounts of single-chain protein C than conventionally isolated protein C when analyzed by sodium dodecyl sulfate-polyacrylamide gels under reduced conditions. The factor IX concentrate was applied to this Ca2+-dependent antibody JTC-3-immobilized Sepharose in the presence of 5 mM CaCl2, and protein C with its gamma-carboxyglutamic acid (Gla) domain intact was firstly bound to this column and then eluted by metal chelation with EDTA. When flow-through fractions were applied again in the presence of Ca2+ to this column, modified protein C which had lost its N-terminal 42-residue peptide was weakly bound to this column. It was eluted in the absence of Ca2+. However, only a low percentage of modified protein C was detectable by an enzyme-linked immunosorbent assay using Ca2+-dependent monoclonal antibody JTC-3 and peroxidase-labeled immunopurified polyclonal antibody. These results indicate that factor IX concentrate has both Gla-domain-intact and Gla-domainless protein C. Moreover, it suggests that Ca2+-dependent monoclonal antibody JTC-3 may recognize the coupled conformational change of protein C induced by the combined effect of Ca2+ binding to the Gla domain and to other parts of protein C.  相似文献   

14.
1. Protein kinase C (PKC) activity has been identified in various strains of the human parasite, Entamoeba histolytica. 2. An amoebic protein of mol. wt 78,000 was recognized by polyclonal antibodies raised against the 82,000 mol. wt rat brain protein kinase C. 3. A partially purified PKC preparation from E. histolytica phosphorylated histone I in the presence of calcium, phospholipids and diacylglycerol, and specifically bound tritiated phorbol ester at an apparent KD of 9 nM. 4. A relocalization of the amoebic PKC activity from the cytosol to the membrane fraction was observed when trophozoites were actively phagocytising bacteria. Under these conditions, a labelled phosphoprotein of mol. wt 68,000 was identified. 5. Similar to what was found during macrophage activation, a myristoylated mol. wt 68,000 protein was detected in amoebae grown in the absence of bacteria, but not in amoebae which were active in phagocytosis.  相似文献   

15.
The current study was performed with the aim to evaluate the chaperoning ability, structural features, and aggregation propensity of wild-type and R12C mutant αB-crystallins (αB-Cry) under thermal stress and in the presence of calcium ion. The results of different spectroscopic analyses suggest that wild-type and mutant αB-Cry have dissimilar secondary and tertiary structures. Moreover, αB-Cry indicates slightly improved chaperone activity upon the R12C mutation. Thermal stress and calcium, respectively, enhance and reduce the extent of solvent-exposed hydrophobic surfaces accompanying formation of ordered and non-ordered aggregate entities in both proteins. Compared to the wild-type protein, the R12C mutant counterpart shows significant resistance against thermal and calcium-induced aggregation. In addition, in the presence of calcium, significant structural variation was accompanied by reduction in the solvent-exposed hydrophobic patches and attenuation of chaperone activity in both proteins. Additionally, gel mobility shift assay indicates the intrinsic propensity of R12C mutant αB-Cry for disulfide bridge-mediated protein dimerization. Overall, the results of this study are of high significance for understanding the molecular details of different factors that are involved in the pathomechanism of cataract disorders.  相似文献   

16.
The primary amino acid sequence of the major herpes simplex virus type 1 (HSV-1)-infected cell polypeptide 8 (ICP8) deduced from the DNA sequence of the unique long open reading frame 29 (UL29 ORF) contains a potential metal-binding domain of the form Cys-X2-5-Cys-X2-15-A-X2-4-A where A may be either histidine or cysteine and X is any amino acid. The putative metal-binding sequence in ICP8 encompasses residues 499-512 as follows: C-N-L-C-T-F-D-T-R-H-A-C-V-H-. Atomic absorption analysis of several preparations of ICP8 indicates the presence of 1 mol of zinc/mol of protein. The zinc is resistant to removal by dialysis against concentrations of EDTA which deplete zinc from alcohol dehydrogenase. The bound zinc can be removed by reaction with the reversible sulfhydryl reagent p-hydroxymercurimethylsulfonate and the zinc-depleted protein transiently retains DNA binding activity. Digestion of both native and zinc-depleted ICP8 with V8 protease indicates that the bound zinc is required for the structural integrity of the protein.  相似文献   

17.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

18.
Fluorescence studies with the human complement component Clq were performed as a function of temperature and demonstrated the existence of low temperature, thermally induced structural transitions in the Clq molecule. Both intrinsic protein fluorescence and the fluorescence of the apolar probe 2-p-toluidinylnaphthalene-6-sulfonate independently showed thermal transitions at 15°C, 35°C and 48°C. Clq activity measurements indicated no loss of hemolytic activity at temperatures below 46°C. It is proposed that these structural transitions are a consequence of the internal flexibility of the native Clq molecule.  相似文献   

19.
Thermal stability of Escherichia coli Fpg protein was studied using far-UV circular dichroism and intrinsic fluorescence. Experimental data indicate that Fpg irreversibly aggregates under heating above 35 degrees C. Heat aggregation is preceded by tertiary conformational changes of Fpg. However, the secondary structure of the fraction that does not aggregate remains unchanged up to approximately 60 degrees C. The kinetics of heat aggregation occurs with an activation enthalpy of approximately 21 kcal/mol. The fraction of monomers forming aggregates decreases with increasing urea concentration, with essentially no aggregation observed above approximately 3 M urea, suggesting that heat aggregation results from hydrophobic association of partially unfolded proteins. With increasing urea concentration, Fpg unfolds in a two-state reversible transition, with a stability of approximately 3.6 kcal/mol at 25 degrees C. An excellent correlation is observed between the unfolded fraction and loss of activity of Fpg. A simple kinetic scheme that describes both the rates and the extent of aggregation at each temperature is presented.  相似文献   

20.
A mutant toxin (MT) that abolished almost 99% of the hemolytic activity of alpha-toxin was isolated by random polymerase chain reaction (PCR) mutagenesis of the gene for Clostridium perfringens alpha-toxin. In the mutant toxin, the amino acids at Tyr (Y)-62, Thr (T)-74 and Ile (I)-345 were substituted with His, Ile and Met, respectively. Replacement of T-74 with Ile by site-directed mutagenesis resulted in the loss of hemolytic, phospholipase C and sphingomyelinase activities by 1/250-fold of that of the wild-type. The replacement of Y-62 with Ile or I-345 with Met alone did not affect the activities of the toxin. T74I mutant bound to sheep erythrocyte membranes and specifically bound [65Zn]2+ in Tris-buffered saline, in the same manner as the wild-type, and contained 2 mol of zinc ions per mol of protein. These results suggest that the T-74 residue plays a key role in these biological activities of C. perfringens alpha-toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号