首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death (PCD) or apoptosis is a process whereby developmental or environmental stimuli activate a specific series of events that culminate in cell death. PCD is essential for normal development and abnormality in the process can lead to defects ranging from embryonic lethality and tissue-specific perturbation of postnatal development to a high susceptibility to malignancy. Therapeutics that modulate the regulation of PCD may provide a new opportunity for the treatment of the PCD related diseases and cancer. CD40 and CD95 (Fas/Apo-I) are transmembrane proteins of the nerve growth factor/tumour necrosis factor α receptor superfamily. The death signal of PCD occurs when the CD95 receptor on the cell surface binds to the CD95 ligand (CD95L) or to the anti-CD95 monoclonal antibody (mAb). In contrast, PCD could be inhibited by the survival signal mediated from the binding of the CD40 receptor to the CD40 ligand (CD40L) or to the anti-CD40 mAb. In this review, the interaction of CD40/CD40L and CD95/CD95L on PCD in normal and malignant cells is discussed.  相似文献   

2.
 T cells play a key role in the control of abnormal B cell proliferation. Factors that play a role in inadequate T cell responses include absence of expression of costimulatory and adhesion molecules by the malignant B cells and lack of cytotoxic T cells specific for tumor-associated antigens. A number of approaches have been used to enhance T cell response against malignant B cells. Agents such as soluble CD40 ligand can enhance expression of costimulatory molecules by the malignant B cells and improve their ability to activate T cells. Anti-CD3-based bispecific antibodies can retarget T cells toward the tumor cells irrespective of T cell specificity. We used the V 38C13 murine lymphoma model to assess whether the combination of soluble CD40 ligand and anti-CD3-based bispecific antibody can enhance T cell activation induced by malignant B cells more effectively than either approach alone. Expression of CD80, CD86, and ICAM-1 on lymphoma cells was up-regulated by soluble CD40 ligand. Syngeneic T cells were activated more extensively by lymphoma cells when the lymphoma cells were pre-treated with soluble CD40 ligand. Bispecific-antibody induced T cell activation was more extensive when lymphoma cells pretreated with soluble CD40 ligand were present. The combination of soluble CD40 ligand plus bispecific antibody enhanced the median survival of mice compared to mice treated with bispecific anibody alone. We conclude that pretreatment of tumor cells with agents capable of inducing costimulatory molecule expression, such as soluble CD40 ligand can enhance the ability of malignant B cells to activate T cells. This effect is enhanced by the addition of bispecific antibody. The combination of enhanced expression of costimulatory molecules and retargeting of T cells by bispecific antibody may allow for a more effective T-cell-based immunotherapy. Accepted: 14 October 1997  相似文献   

3.
CD40L has a well-established role in enhancing the immunostimulatory capacity of normal and malignant B cells, but a formulation suitable for clinical use has not been widely available. Like other TNF family members, in vivo and in vitro activity of CD40L requires a homotrimeric configuration, and growing evidence suggests that bioactivity depends on higher-order clustering of CD40. We generated a novel formulation of human recombinant CD40L (CD40L-Tri) in which the CD40L extracellular domain and a trimerization motif are connected by a long flexible peptide linker. We demonstrate that CD40L-Tri significantly expands normal CD19+ B cells by over 20- to 30-fold over 14 days and induces B cells to become highly immunostimulatory antigen-presenting cells (APCs). Consistent with these results, CD40L-Tri-activated B cells could effectively stimulate antigen-specific T responses (against the influenza M1 peptide) from normal volunteers. In addition, CD40L-Tri could induce malignant B cells to become effective APCs, such that tumor-directed immune responses could be probed. Together, our studies demonstrate the potent immune-stimulatory effects of CD40L-Tri on B cells that enable their expansion of antigen-specific human T cells. The potent bioactivity of CD40L-Tri is related to its ability to self-multimerize, which may be facilitated by its long peptide linker.  相似文献   

4.
Four human cutaneous squamous cell carcinoma (SCC) cell lines and normal human epidermal keratinocyte (NHEK) cells from two donors were examined for sensitivity to the synthetic retinoid 6-[3-(1 -adamantyl)-4-hydroxyphenyl]-2-naph-thalene carboxylic acid (CD437) alone or in combination with other agents. CD437 promoted rapid (within 2 h) apoptosis in SCC cells and G1 arrest in NHEK cells. G1 arrest in NHEK cells was sustained for 48 h while apoptosis occurred in approximately 60% of SCC cell after 24 h. Apoptosis could not be inhibited by nuclear retinoic acid receptor antagonists or cycloheximide, indicating CD437 was functioning in a receptor-independent manner. All-trans retinoic acid not only failed to induce apoptosis in SCC cells even at 20-fold higher concentration relative to the effective concentration of CD437; it also decreased the efficacy of CD437. Because of its differential effects on normal versus malignant keratinocytes, CD437 may be useful for the prevention or treatment of cutaneous SCC.  相似文献   

5.
A Hendrickx  X Bossuyt 《Cytometry》2001,46(6):336-339
CD45 is a glycoprotein expressed on all lymphohematopoietic cells. Its expression increases during normal B-cell differentiation and remains stable on mature cells. Although it is widely known that CD45 antigen expression is decreased in B-acute lymphocytic leukemia (ALL), only scarce and contradictory information is available on CD45 expression on mature B-cell malignancies. In healthy adults (n = 15), CD45 expression on B lymphocytes was lower than that on T cells. In patients with chronic lymphocytic leukemia (CLL; n = 22), CD45 expression on malignant cells was lower than that on the whole lymphocyte population of healthy adults (n = 28) and on normal B lymphocytes (n = 15). In 6 of the 22 CLL patients, the malignant cell population could be separated from the normal lymphocyte population on the CD45-side scatter (SSC) plot. In 16 CLL patients, there was some degree of overlap between the malignant and normal cells with respect to CD45 expression. For these patients, there was an inverse correlation between CD45 expression on the whole lymphocyte population and the percentage of malignant cells in this population. In two patients with mantle cell lymphoma (MCL), CD45 expression on the malignant cells appeared lower than that on normal B cells and on the whole lymphocyte population. In six patients with hairy cell leukemia (HCL), CD45 expression on hairy cells was comparable to that on the whole lymphocyte population of healthy adults, but slightly higher than that of normal B cells. Evaluation of CD45 expression may help to characterize mature B-cell malignancies.  相似文献   

6.

Introduction

Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma.

Aims

To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines.

Results

Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both.

Conclusions

1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes.  相似文献   

7.
Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells.  相似文献   

8.
Cellular immunity plays a major role in controlling human papilloma virus infection and development of cervical carcinoma. Mononuclear cell infiltration possibly due to the action of chemokines becomes prominent in the tumor tissue. In fact, the macrophage chemoattractant protein-1, MCP-1, was detected in cervical squamous cell carcinoma in situ, whereas absent in cultured cells. From this, unknown environmental factors were postulated regulating chemokine expression in vivo. In this study, we show high CD40 expression on cervical carcinoma cells and CD40 ligand (CD40L) staining on attracted T cells in tumor tissue, suggesting a paracrine stimulation mechanism via CD40L-CD40 interactions. We therefore investigated chemokine synthesis in nonmalignant and malignant human papilloma virus-positive cell lines after CD40L exposure. Constitutive expression of MCP-1, MCP-3, RANTES, and IFN-gamma-inducible protein-10 was almost undetectable in all cell lines tested. CD40L was able to induce MCP-1 production; however, despite much higher CD40 expression in malignant cells, MCP-1 induction was significantly lower compared with nontumorigenic cells. After sensitization with IFN-gamma, another T cell-derived cytokine showing minimal effects on CD40 expression levels, CD40 ligation led to a more than 20-fold MCP-1 induction in carcinoma cell lines. An even stronger effect was observed for IFN-gamma-inducible protein-10. Our study highlights the synergism of T cell-derived mediators such as CD40L and IFN-gamma for chemokine responses in cervical carcinoma cells, helping to understand the chemokine expression patterns observed in vivo.  相似文献   

9.
Chronic lymphocytic leukemia (CLL) is a clonal B cell disorder of unknown origin. Accessory signals from the microenvironment are critical for the survival, expansion, and progression of malignant B cells. We found that the CLL stroma included microvascular endothelial cells (MVECs) expressing BAFF and APRIL, two TNF family members related to the T cell-associated B cell-stimulating molecule CD40L. Constitutive release of soluble BAFF and APRIL increased upon engagement of CD40 on MVECs by CD40L aberrantly expressed on CLL cells. In addition to enhancing MVEC expression of CD40, leukemic CD40L induced cleavases that elicited intracellular processing of pro-BAFF and pro-APRIL proteins in MVECs. The resulting soluble BAFF and APRIL proteins delivered survival, activation, Ig gene remodeling, and differentiation signals by stimulating CLL cells through TACI, BAFF-R, and BCMA receptors. BAFF and APRIL further amplified CLL cell survival by upregulating the expression of leukemic CD40L. Inhibition of TACI, BCMA, and BAFF-R expression on CLL cells; abrogation of CD40 expression in MVECs; or suppression of BAFF and APRIL cleavases in MVECs reduced the survival and diversification of malignant B cells. These data indicate that BAFF, APRIL, and CD40L form a CLL-enhancing bidirectional signaling network linking neoplastic B cells with the microvascular stroma.  相似文献   

10.
CD4(+) T cells have been shown to play a critical role in the maintenance of an effective anti-viral CD8(+) CTL response in murine models. Recent studies have demonstrated that CD4(+) T cells provide help to CTLs through ligation of the CD40 receptor on dendritic cells. The role of CD4(+) T cell help in the expansion of virus-specific CD8(+) memory T cell responses was examined in normal volunteers recently vaccinated to influenza and in HIV-1 infected individuals. In recently vaccinated normal volunteers, CD4(+) T cell help was required for optimal in vitro expansion of influenza-specific CTL responses. Also, CD40 ligand trimer (CD40LT) enhanced CTL responses and was able to completely substitute for CD4(+) T cell help in PBMCs from normal volunteers. In HIV-1 infection, CD4(+) T cell help was required for optimal expansion of HIV-1-specific memory CTL in vitro in 9 of 10 patients. CD40LT could enhance CTL in the absence of CD4(+) T cell help in the majority of patients; however, the degree of enhancement of CTL responses was variable such that, in some patients, CD40LT could not completely substitute for CD4(+) T cell help. In those HIV-1-infected patients who demonstrated poor responses to CD40LT, a dysfunction in circulating CD8(+) memory T cells was demonstrated, which was reversed by the addition of cytokines including IL-2. Finally, it was demonstrated that IL-15 produced by CD40LT-stimulated dendritic cells may be an additional mechanism by which CD40LT induces the expansion of memory CTL in CD4(+) T cell-depleted conditions, where IL-2 is lacking.  相似文献   

11.
To evaluate the capability of NK cells and cytotoxic T lymphocytes to interact with normal hematopoietic progenitor cells (HPC), as compared to neoplastic lymphohematopoietic cells, we investigated inhibition of colony growth of these cell populations in semi-solid culture systems, after incubation with cloned cytotoxic effector cells. Three different types of cloned effector cells were investigated: TCR-/CD3- NK cells, TCR-gamma delta+/CD3+ cells, and TCR-alpha beta+/CD3+ cytotoxic T lymphocytes. Effector cells showed differential levels of tumor cell colony inhibition, but no MHC-non-restricted lysis of normal HPC was observed. Pre-stimulation of normal HPC by culturing on established stromal layers had no effect. Cell-mediated lysis of HPC only occurred by Ag-specific MHC-restricted lysis by CTL, or by antibody-dependent cellular cytotoxicity. In cell mixing experiments, irradiated tumor cells, but not normal bone marrow cells inhibited tumor cell lysis. Furthermore, cloned effector lymphocytes were able to specifically eliminate malignant cells from tumor contaminated bone marrow without damaging normal HPC. When fresh leukemic cells were used as targets, growth of acute myeloblastic leukemia colonies was inhibited after incubation with several cytotoxic effector clones, whereas chronic myeloid leukemia precursor cells showed limited sensitivity to MHC-non-restricted cytolysis. These results indicate that MHC-non-restricted cytolysis by NK cells is selectively directed against neoplastic cells and not against normal HPC.  相似文献   

12.
Cultured prostatic epithelial cells have been extensively studied as a model of prostate biology. What is the lineage relationship of the cultured cells to the epithelial cell types in tissue? How different are cultured cells derived from tumor tissue to those derived from benign tissue? Expression of cluster designation (CD) cell surface molecules has been shown to be useful in characterizing cells according to lineage. A CD profile was therefore generated for cultured human prostatic epithelial cells and compared with those previously established for basal and luminal epithelial cells in the prostate. Presence of CD44, CD49b, CD49f, and CD104 and absence of CD57 suggests that cultured cells were derived from basal cells of prostatic tissues. However, expression of certain CD antigens characteristic of luminal epithelial cells was also observed in subpopulations of cultured cells. The pattern of CD antigens in cultured cells reflects a phenotype similar to that of transit-amplifying cells that have been described in the prostate. Several CD antigens were found expressed by both cultured prostatic epithelial and stromal cells, and are probably associated with cell proliferation. The CD profiles of cultured epithelial cell strains derived from normal compared with malignant tissues were notably similar to each other and to that of the prostate cancer cell line PC-3. We conclude that cells in culture retain expression of certain lineage-characteristic CD antigens. Furthermore, CD antigens can define subpopulations of cells with differential gene expression.  相似文献   

13.
14.
The CD22 extracellular domain regulates B lymphocyte function by interacting with alpha2,6-linked sialic acid-bearing ligands. To understand how CD22 ligand interactions affect B cell function in vivo, mouse anti-mouse CD22 mAbs were generated that inhibit CD22 ligand binding to varying degrees. Remarkably, mAbs which blocked CD22 ligand binding accelerated mature B cell turnover by 2- to 4-fold in blood, spleen, and lymph nodes. CD22 ligand-blocking mAbs also inhibited the survival of adoptively transferred normal (73-88%) and malignant (90%) B cells in vivo. Moreover, mAbs that bound CD22 ligand binding domains induced significant CD22 internalization, depleted marginal zone B cells (82-99%), and reduced mature recirculating B cell numbers by 75-85%. The CD22 mAb effects were independent of complement and FcRs, and the CD22 mAbs had minimal effects in CD22AA mice that express mutated CD22 that is not capable of ligand binding. These data demonstrate that inhibition of CD22 ligand binding can disrupt normal and malignant B cell survival in vivo and suggest a novel mechanism of action for therapeutics targeting CD22 ligand binding domains.  相似文献   

15.
The expression of CD10/CALLA is associated primarily with childhood leukemia of pre-B lymphocyte phenotype. We have compared the hybridization pattern of the CALLA gene from leukemic and normal cells digested with several restriction enzymes. No alterations were noticed with Eco RI, Sac I, Pvu II, Eco RV, Hind III, and Msp I. Since CALLA is also found on other malignancies, we analyzed DNA samples prepared from cell lines derived from leukemia, lymphoma, glioblastoma, retinoblastoma, and neuroblastoma. Normal restriction patterns were observed for all the lines regardless of their CALLA phenotype. Having demonstrated previously that CALLA was structurally identical to neutral endopeptidase 3.4.24.11 (NEP), we have now established a correlation between surface expression of CALLA and NEP activity on leukemia samples and on several cell lines. Malignant cells tested expressed a functionally active enzyme and no gross alteration was present in the CALLA gene. The CD44 gene is expressed on most cells of hemopoietic origin and on greater than 95% of cases of acute lymphoblastic leukemia and acute myeloblastic leukemia studied. It is also expressed on normal astrocytes and on malignant cells of glioma/astrocytoma types. We now report that a similar pattern of hybridization was observed with Sac I, Pvu II, and Eco RI for leukemic samples, normal cells, and malignant cell lines. A polymorphism was recently detected for CD44 using Hind III; leukemic cells and malignant lines also showed this normal polymorphism. Thus no deletion or insertion could be detected in the CD44 gene of leukemic cells and malignant lines, suggesting that no gross DNA alterations were involved. The correlation between surface expression and enzymatic activity of CD10/CALLA and the expression of CD44 on a variety of malignant cells would suggest that the structure and function of these two gene products are probably not altered by the process of transformation.  相似文献   

16.
The human B lymphocyte-associated CD37 antigen (gp40-52) has been characterized by the monoclonal antibody HD28. The CD37 antigen is strongly expressed on surface immunoglobulin positive B lymphocytes and weakly on a subpopulation of T lymphocytes and myeloid cells. The total molecular mass of the antigen ranges from approximately 40 to 52 kDa in B cell-derived leukemias and malignant lymphomas as well as in normal and anti-mu/B cell growth factor-activated tonsillar B cells. The polydisperse nature of the electrophoretic pattern of the CD37 antigen was found to be due to a microheterogeneity in its carbohydrate moiety. Biochemical analysis showed that the CD37 antigen derived from B cell-lines BJAB and LICR-LON-HMy2 consists of a single chain protein core of approximately 25 kDa to which two N-linked, complex carbohydrate antennae of various length are bound. The glycosylation of the molecule comprises about 50% of the total molecular mass. The molecule does not contain O-linked carbohydrate chains. In contrast, the non-Hodgkin's lymphoma cell line, OCI.LY1, which is growth-dependent on human serum, carries a CD37 antigen with an additional carbohydrate chain resulting in a total molecular mass of approximately 40 to 64 kDa. At the electron microscopy level, this cell surface-expressed antigen was found to be associated with intracellular vesicles. The subcellular distribution of the CD37 antigen may reflect a function of this antigen both at the cell surface and in the cytoplasm. We found that, both due to its peculiar biochemical structure and its ultrastructural distribution, the CD37 antigen closely resembles the 46-kDa species of the mannose 6-phosphate receptor. The implications of this possible congruence for the function of the CD37 antigen are discussed.  相似文献   

17.
18.
Activation of CD40 on hepatocytes and cholangiocytes is critical for amplifying Fas-mediated apoptosis in the human liver. C4b-Binding Protein (C4BP) has been reported to act as a potential surrogate ligand for CD40, suggesting that it could be involved in modulating liver epithelial cell survival. Using surface plasmon resonance (BiaCore) analysis supported by gel filtration we have shown that C4BP does not bind CD40, but it forms stable high molecular weight complexes with soluble CD40 ligand (sCD154). These C4BP/sCD154 complexes bound efficiently to immobilised CD40, but when applied to cholangiocytes they failed to induce apoptosis or proliferation or to activate NFkB, AP-1 or STAT 3, which are activated by sCD154 alone. Thus C4BP can modulate CD40/sCD154 interactions by presenting a high molecular weight multimeric sCD154/C4BP complex that suppresses critical intracellular signalling pathways, permitting cell survival without inducing proliferation. Immunohistochemistry demonstrated co-localisation and enhanced expression of C4BP and CD40 in human liver cancers. These findings suggest a novel pathway whereby components of the complement system and TNF ligands and receptors might be involved in modulating epithelial cell survival in chronic inflammation and malignant disease.  相似文献   

19.
Preformed CD40/CD40 homodimers were initially observed on human Burkitt lymphoma cell lines, normal B cells, and transitional bladder carcinoma cell lines. However, the nature and the biological relevance of these homodimers have not yet been investigated. In the present study, we demonstrated that Epstein-Barr virus-transformed B cells and CD40-transfected HEK 293 cells constitutively expressed disulfide-linked CD40/CD40 homodimers at low levels. Oligomerization of CD40 leads to a rapid and significant increase in the disulfide-linked CD40/CD40 homodimer formation, a response that could be prevented using a thiol-alkylating agent. Formation of CD40/CD40 homodimers was found to be absolutely required for CD40-mediated activation of phosphatidylinositol 3-kinase, which, in turn regulated B7.2 expression. In contrast, CD40 monomers provided the minimal signal emerging from CD40, activating p38 MAP kinase and inducing homotypic B cell adhesion. CD40/CD40 homodimer formation was totally independent of TRAF1/2/3/5 associations with the threonine at position 254 in the cytoplasmic tail of the CD40 molecules. This finding may be vital to better understanding the molecular mechanisms that govern cell signaling triggered by CD40/CD154 interactions.  相似文献   

20.
CD40, a tumor necrosis factor (TNF) receptor family member, is widely recognized for its prominent role in the antitumor immune response. The immunostimulatory effects of CD40 ligation on malignant cells can be switched to apoptosis upon disruption of survival signals transduced by the binding of the adaptor protein TRAF6 to CD40. Apoptosis induction requires a TRAF2-interacting CD40 motif but is initiated within a cytosolic death-inducing signaling complex after mobilization of receptor-bound TRAF2 to the cytoplasm. We demonstrate that receptor-interacting protein 1 (RIP1) is an integral component of this complex and is required for CD40 ligand-induced caspase-8 activation and tumor cell killing. Degradation of the RIP1 K63 ubiquitin ligases cIAP1/2 amplifies the CD40-mediated cytotoxic effect, whereas inhibition of CYLD, a RIP1 K63 deubiquitinating enzyme, reduces it. This two-step mechanism of apoptosis induction expands our appreciation of commonalities in apoptosis regulatory pathways across the TNF receptor superfamily and provides a telling example of how TNF family receptors usurp alternative programs to fulfill distinct cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号