首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term postnatal treatment of rats with the dopamine D2 receptor antagonist, spiroperidol, results in the impaired development of striatal D2 receptors. Because the tripeptide prolyl-leucyl-glycinamide (MIF-1) attenuates haloperidol-induced up-regulation of striatal dopamine D2 receptors in adult rats, we studied the effect of MIF-1 on the spiroperidol-induced alteration of striatal D2 ontogeny. Postnatal treatment of rats with spiroperidol (1.0 mg/kg/day, IP, x32 days from birth) resulted in a 74% decrease in the Bmax for [3H]spiroperidol binding with no change in the Kd at 5 weeks. When rats were studied at 8 weeks, in the absence of additional treatment, total specific [3H]spiroperidol binding was reduced by 59%. While MIF-1 alone (1.0 mg/kg/day, IP, x32 days from birth) had no effect on [3H]spiroperidol binding, MIF-1 completely attenuated the ontogenic impairment of striatal D2 receptors that was produced by spiroperidol treatment. At 5 weeks the Bmax for [3H]spiroperidol binding was at the saline control level in the group of rats cotreated with spiroperidol and MIF-1. At 8 weeks, with no additional treatments, the specific binding of [3H]spiroperidol to striatum was also at control levels in the group cotreated with spiroperidol and MIF-1. These findings demonstrate that MIF-1 attenuates spiroperidol-induced impairment of development of striatal dopamine D2 receptors in rats.  相似文献   

2.
The effect of tyrosine-alkylating agents on the ligand-binding properties of bovine striatal dopamine D1 and D2 receptors was investigated. The tyrosine-alkylating agents, p-nitrobenzenesulphonylfluoride (pNBSF) and tetranitromethane (TNM) caused a time-and dose-dependent loss of the binding of [3H]SCH-23390 and [3H]spiroperidol, ligands specific for dopamine D1 and D2 receptors, respectively. The two dopamine receptors, however, showed a differential sensitivity to inactivation by these agents. The mechanism of inhibition of the two receptors appears to be complex as treatment of membranes with pNBSF and TNM resulted in a decrease of both the Kd and the Bmax of ligand binding. Spiroperidol almost completely protected the TNM-induced inhibition of [3H]spiroperidol binding to dopamine D2 receptors whereas SCH-23390 afforded only partial protection of the [3H]SCH-23390 binding by TNM suggesting that more than one tyrosine groups may be involved in the D1 receptor binding activity.  相似文献   

3.
Dithiothreitol (DTT), a disulfide reducing agent, diminished the specific binding of [3H] dopamine to partially purified calf striatal membranes (P2) but did not have an effect on [3H] spiroperidol binding. The thiol reagents, p-chloromercuribenzoate (PCMB), N-ethylmaleimide (NEM) and iodoacetamide (IA), were also tested for inhibitory effects on agonist and antagonist binding to the dopamine receptor. PCMB inhibited both [3H] dopamine and [3H] spiroperidol binding by changing the affinity (Kd) and the number of binding sites (Bmax) for both of these ligands. This effect of PCMB was reversed by the addition of DTT. NEM inhibited binding to the dopamine agonist site but not to the antagonist site, while IA was ineffective on either site. These results indicate that a DTT-reducible disulfide bond may be an essential component for agonist binding to the dopamine receptor. Furthermore, the experiments with PCMB, NEM and IA suggest that the exposure of thiol groups in the dopamine receptor may play an important role in agonist and antagonist binding.  相似文献   

4.
Saturable, high-affinity binding sites for [3H]spiroperidol can be demonstrated in crude suspensions of mussel gill tissue. This binding shows stereospecificity toward the d- and l-isomers of butaclamol. Competition studies show that both dopamine and serotonin can displace [3H]spiroperidol from binding sites at nanomolar concentrations. Evidence is presented that suggests that the [3H]spiroperidol-binding sites can be divided into two distinct groups: those with high affinity for dopamine and those with high affinity for serotonin.  相似文献   

5.
The role of lipids in maintaining ligand binding properties of affinity-purified bovine striatal dopamine D2 receptor was investigated in detail. The receptor, purified on a haloperidol-linked Sepharose CL6B affinity column, exhibited low [3H]spiroperidol binding unless reconstituted with soybean phospholipids. In order to understand the role of individual phospholipids in maintaining the receptor binding activity, the purified preparation was reconstituted separately with individual phospholipids and assayed for [3H]spiroperidol binding. Except for phosphatidylcholine and phosphatidylethanolamine, that respectively restored 30 and 20% binding as compared to that obtained with soybean lipids, reconstitution with other lipids had very little effect. When various combinations of phospholipids were used for reconstitution, a phosphatidylcholine and phosphatidylserine mixture seemed to almost fully restore the receptor binding. A mixture of phosphatidylcholine and phosphatidylethanolamine was as effective as phosphatidylcholine alone in reconstituting ligand binding; however, when phosphatidylserine was also included in the mixture, there was a pronounced increase in binding (about 2-fold compared to the soybean lipids and about 6-fold compared to the phosphatidylcholine-phosphatidylethanolamine mixture). Substitution of other phospholipids or cholesterol for phosphatidylserine in phosphatidylcholine and phosphatidylethanolamine mixture had little effect. Maximal reconstitution of [3H]spiroperidol binding was obtained with phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine mixture (2:2:1, w/w) at a concentration of 0.5 mg/ml. The reconstituted receptor exhibited high affinity binding for [3H]spiroperidol which was comparable to that obtained with membrane or solubilized preparations. Various dopaminergic antagonists and agonists showed appropriate order of potency for the reconstituted receptor. The presently described reconstitution data suggest a role of specific phospholipids in preserving the binding properties of dopamine D2 receptor and should prove useful in studies on functional reconstitution of the receptor.  相似文献   

6.
Abstract: The effects of monovalent and divalent cations on binding of [3H]spiroperidol to dopamine receptors in rat corpus striatum were studied. Both monovalent and divalent cations as well as several chelating agents increase the number of [3H] spiroperidol binding sites. Manganese is most potent, enhancing binding at 1 μ m concentration, while magnesium and calcium are at least two orders of magnitude less potent and the monovalent cations sodium, potassium and lithium are still weaker. Divalent cations enhance the potency of dopaminergic agonists in competing for [3H]spiroperidol binding, an effect which appears to be independent of the ionic augmentation of [3H]spiroperidol binding. Divalent cations decrease both the association and dissociation rates of [3H]spiroperidol binding to dopamine receptor sites.  相似文献   

7.
Dopamine is synthesized from l-dopa and subsequently processed into norepinephrine and epinephrine. Any excess neurotransmitter can be taken up again by the neurons to be broken down enzymatically into DOPAC. The effect of dopamine on mammalian food intake is controversial. Mice unable to synthesize central dopamine die of starvation. However, studies have also shown that central injection of dopamine inhibits food intake. The effect of dopaminergic system in the fish feeding behavior has been scarcely explored. We report that the inclusion of l-dopa in the diets results in the activation of sea bass central dopaminergic system but also in the significant increase of the hypothalamic serotonin levels. Dietary l-dopa induces a decrease of food intake and feed conversion efficiency that drives a decline of all growth parameters tested. No behavioral effects were observed after l-dopa treatment. l-dopa treatment stimulated central expression of NPY and CRF. It suggests that CRF might mediate l-dopa effects on food intake but also that CRF neurons lie downstream of NPY neurons in the hierarchical forebrain system, thus controlling energy balance. Unexpectedly, dietary administration of haloperidol, a D2-receptor antagonist, cannot block dopamine effects but also induces a decline of the food intake. This decrease seems to be a side effect of haloperidol treatment since fish exhibited a decreased locomotor activity. We conclude that oral l-dopa inhibits sea bass food intake and growth. Mechanism could also involve an increase of hypothalamic serotoninergic tone.  相似文献   

8.
The role of lipids in maintaining ligand binding properties of affinity-purified bovine striatal dopamine D2 receptor was investigated in detail. The receptor, purified on a haloperidol-linked Sepharose CL6B affinity column, exhibited low [3H]spiroperidol binding unless reconstituted with soybean phospholipids. In order to understand the role of individual phospholipids in maintaining the receptor binding activity, the purified preparation was reconstituted separately with individual phospholipids and assayed for [3H]spiroperidol binding. Except for phosphatidylcholine and phosphatidylethanolamine, that respectively restored 30 and 20% binding as compared to that obtained with soybean lipids, reconstitution with other lipids had very little effect. When various combinations of phospholipids were used for reconstitution, a phosphatidylcholine and phosphatidylserine mixture seemed to almost fully restore the receptor binding. A mixture of phosphatidylcholine and phosphatidylethanolamine was as effective as phosphatidylcholine alone in reconstituting ligand binding; however, when phosphatidylserine was also included in the mixture, there was a pronounced increase in binding (about 2-fold compared to the soybean lipids and about 6-fold compared to the phosphatidylcholine-phosphatidylethanolamine mixture). Substitution of other phospholipids or cholesterol for phosphatidylserine in phosphatidylcholine and phosphatidylethanolamine mixture had little effect. Maximal reconstitution of [3H]spiroperidol binding was obtained with phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine mixture (2:2:1, w/w) at a concentration of 0.5 mg/ml. The reconstituted receptor exhibited high affinity binding for [3H]spiroperidol which was comparable to that obtained with membrane or solubilized preparations. Various dopaminergic antagonists and agonists showed appropriate order of potency for the reconstituted receptor. The presently described reconstitution data suggest a role of specific phospholipids in preserving the binding properties of dopamine D2 receptor and should prove useful in studies on functional reconstitution of the receptor.  相似文献   

9.
In isolated rat hearts L-alphacetylmethadol (LAAM) produced a concentration-dependent decrease in the spontaneous beating rate. This effect was completely prevented by 1.0 microM atropine. Chronic treatment of rats with LAAM increased the number of striatal dopamine receptors measured by [3H]spiroperidol binding. The affinity of these binding sites for [3H]spiroperidol was unchanged by LAAM treatment. There were no significant changes in the number or affinity of binding sites for the labeled muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) with chronic LAAM treatment. The ability of LAAM, nor-LAAM, or dinor-LAAM to antagonize the binding of [3H]spiroperidol (40 pM) or [3H]QNB (125 pM) to striatal membrane fragments was tested. The measured affinity constants for LAAM and metabolites were 100-3000 times higher than the affinity constants of unlabeled spiroperidol at [3H]spiroperidol binding sites. The affinity constants of LAAM and metabolites at muscarinic binding sites were 10-20 times higher than pilocarpine and 5000-8000 times higher than atropine. These results suggest that LAAM can produce some of its effects by acting as a weak agonist at muscarinic receptor sites.  相似文献   

10.
Specific binding of [3H]N-propylnorapomorphine [( 3H]NPA) to 3,4-dihydroxyphenylethylamine (dopamine) D-2 receptors was investigated in rat striatum in vitro. For various dopamine receptor substances, the rank order of potency to inhibit [3H]NPA binding was spiroperidol greater than or equal to NPA greater than LY 171555 greater than SCH 23390 greater than SKF 38393. A single high-affinity binding site was found in membranes prepared in either Tris-citrate buffer or imidazole buffer; the affinity constants were 0.11 and 0.76 nM, respectively. The number of receptors (33 pmol/g wet weight) was independent of whether the membranes were prepared in Tris-citrate buffer or imidazole buffer and was similar to the number of receptors estimated by [3H]spiroperidol binding to dopamine receptors. Irradiation inactivation of frozen whole rat striata showed a monoexponential loss of [3H]NPA binding sites without a change in the binding affinity. The target size of the [3H]NPA binding site was 81,000 daltons, which shows that the functional molecular entity to bind the dopamine D-2 agonist was smaller than the molecular entity to bind the dopamine D-2 antagonist [3H]spiroperidol (target size, 137,000 daltons).  相似文献   

11.
Using a competitive binding assay the effects of 2-hydroxyestradiol-17 beta, 4-hydroxyestradiol-17 beta, estradiol-17 beta and progesterone on the binding of tritiated catecholaminergic ligands to membrane preparations from rat brain and pituitary gland were studied. Up to a concentration of 10(-5) M none of the steroids tested was able to displace [3H]spiroperidol, [3H]dihydroergocryptine or [3H]dihydroalprenolol. The data suggest that the catecholestrogens do not interfere directly with the binding of catecholaminergic ligands to dopaminergic, alpha-adrenergic or beta-adrenergic receptors in the central nervous system. The view that a catechol structure is not essential for the interaction with dopaminergic receptors was further supported by the results obtained from additional studies on the competition of O-methylated and deaminated dopamine metabolites with [3H]spiroperidol binding.  相似文献   

12.
Dopamine is produced first by hydroxylalation of l-tyrosine to l-dihydroxyphenylalanine (l-dopa) and subsequently by the decarboxylation of l-dopa to dopamine catalysed by the enzymes tyrosine hydroxylase and aromatic l-amino acid decarboxylase (AADC) respectively. Reduced glutathione (GSH) acts as a major cellular antioxidant. We have investigated the role of dopamine in the control of GSH homeostasis in brain cells. The SH-SY5Y human neuroblastoma cell line was found to increase intracellular GSH levels in response to 50 μM dopamine treatment. Similarly the 1321N1 human astrocytoma cell line was found to increase GSH release in response to 50 μM dopamine. The same concentration of l-dopa was also found to increase intracellular GSH in SH-SY5Y cells, however when AADC was inhibited this affect was abolished. Furthermore 1321N1 cells which were found to have almost undetectable levels of AADC activity did not increase GSH release in response to 50 μM l-dopa. These results suggest that at these concentrations dopamine has the potential to act as a signal for the upregulation of GSH synthesis within neuronal-like cells and for the increased trafficking of GSH from astrocytes to neurons. This effect could potentially relate to the activation of antioxidant response elements leading to the induction of phase II detoxifying enzymes including those involved in GSH synthesis and release. The inability of l-dopa to produce a similar effect when AADC was inhibited or when AADC activity was absent indicates that these effects are relatively specific to dopamine. Additionally dopamine but not l-dopa treatment led in an increase in complex I activity of the respiratory chain in SH-SY5Y cells which may be related to the effect of dopamine on GSH levels.  相似文献   

13.
Bovine striatal dopamine D-2 receptor has been purified approximately 2000-fold by affinity chromatography. The receptor, solubilized with cholic acid and sodium chloride, was adsorbed on haloperidol-linked Sepharose CL-6B and eluted with spiroperidol. The adsorption of receptor to the affinity matrix was biospecific as preincubation of the solubilized preparation with D-2 receptor agonists or antagonists blocked retention of receptor. The process also displayed stereoselectivity with respect to (+)- and (-)-butaclamol. Nondopaminergic agents such as mianserin and propranolol failed to exhibit any effect on the adsorption process. Elution of the receptor was also biospecific, as dopaminergic drugs were most effective (spiroperidol greater than haloperidol greater than dopamine) in eluting the bound receptor; whereas other agents, e.g. propranolol, mianserin, and acetic acid, were only slightly effective. One-cycle affinity purification resulted in a recovery of 12% of the original membrane-bound dopamine D-2 receptor with a specific activity of 169,600 fmol/mg of protein as assayed with [3H]spiroperidol binding. The order of potency of D-2 agonists (N-propylnorapomorphine greater than NO434 greater than apomorphine greater than dopamine) and antagonists (spiroperidol greater than (+)-butaclamol greater than domperidone) with the purified preparation was found to be similar to that of the solubilized dopamine D-2 receptor.  相似文献   

14.
N-Methylspiroperidol, the amide N-methyl analogue of the neuroleptic spiroperidol, was radiolabeled with fluorine-18, and its distribution in the baboon brain was studied using positron emission transaxial tomography. Stereospecific binding was demonstrated in the striatum (but not in the cerebellum) by pretreatment with (-)- or (+)-butaclamol. The kinetic distribution was similar to that of [18F]spiroperidol, but the absolute striatal uptake (in percent of administered dose) was at least two-fold higher. Analysis of baboon blood at 10 min after injection indicated that less than half of the radioactivity in the plasma was due to unchanged radioligand. Analysis of the metabolic stability of [18F]-N-methylspiroperidol in rat brain for 4 hr indicated that, like [18F]spiroperidol, it is very stable to metabolic transformation in the rat central nervous system. Striatal uptake and retention in the rat was five-fold higher for [18F]-N-methylspiroperidol than for [18F]spiroperidol. These results suggest that [18F]-N-methylspiroperidol is an ideal choice for studies of the dopamine receptor in humans.  相似文献   

15.
Methysergide administered i.p. caused a dose dependent decrease of serum prolactin levels in rats of both sexes bearing large bilateral electrolytic lesions in the median eminence. This prolactin release inhibiting action of methysergide was prevented by pretreatment of the animals with dopamine receptor blockers pimozide or spiroperidol, which by themselves had no effect on serum prolactin levels. Similar results were observed when the dopamine receptor agonist piribedil was used instead of methysergide. It is concluded that methysergide is capable of inhibiting prolactin secretion by activation of dopamine receptors of the pituitary lactotrophs.  相似文献   

16.
Spiroperidol was covalently conjugated to bovine serum albumin (BSA). Conjugated spiroperidol was almost as efficient as free spiroperidol in its binding capacity to dopamine receptor. Antibodies to spiroperidol were produced in rabbits following repeated immunizations with the conjugate of spiroperidol and BSA. The obtained antibodies have an apparent KD of 0.02 nM for [3H]-spiroperidol. These antibodies bind also to other butyrophenones with IC50 values three to four orders of magnitude higher than the IC50 obtained with unlabeled spiroperidol. Antibodies were purified from anti-spiroperidol sera by affinity chromatography. Anti-idiotypic antibodies were raised in rabbits by immunization with the purified anti-spiroperidol antibodies. Some rabbits produced anti-idiotypic antibodies which bind to rat and calf striatum.  相似文献   

17.
Abstract

We have examined the ability of various antiestrogens (AE's) to compete with 3H-spiroperidol for binding to membrane preparations from striatal tissue and anterior pituitary glands of immature female rats in order to determine the affinity of binding of AE's to D-2 dopamine receptors. Scatchard analyses revealed the presence of a single class of high affinity receptor sites in both the striatum and pituitary with a dissociation constant (Kd) of 0.33 nM and 0.40 nM, respectively, for the dopamine antagonist spiroperidol. The AE's tamoxifen, 4-hydroxy-tamoxifen (TAM-OH), CI-628, LY 117018, and a structurally related compound t-butyl-phenoxyethyl diethylamine (BPEA) were all able to compete with spiroperidol for binding to D-2 receptors and demonstrated relative binding affinities of 0.4-0.06%, with spiroperidol set at 100%. Dopamine displayed a lower affinity, 0.01%. Estradiol failed to compete with spiroperidol for D-2 receptor binding while the non-steroidal estrogen diethylstilbestrol (DES) showed very week competition. For the lipophilic AE's, alteration of the level of their non-specific binding greatly affected their relative affinities in these competitive binding assays. The amine side chain on an aromatic ring appears to be a critical structural requirement in allowing the AE's to bind to the dopamine receptor. The relatively low affinity of AE's for the dopamine receptor and the high degree of interaction of AE's with other proteins suggest that only limited occupancy of D-2 receptors by AE's is likely in vivo.  相似文献   

18.
By use of the radioligand [3H]spiroperidol, D2 3,4-dihydroxyphenylethylamine (dopamine) receptor binding characteristics were studied in calf globus pallidus and compared with those of neostriatum. Antagonist competition curves were monophasic and revealed similar affinities for neostriatum and globus pallidus, suggesting a uniform receptor population with one affinity state for antagonists. In both regions, competition curves with the agonist dopamine were biphasic, distinguishing a high- and low-agonist-affinity state. In neostriatum and globus pallidus, respectively, 45% and 19% of [3H]spiroperidol binding was displaced with high affinity and the remainder with low affinity. In neostriatum, the addition of 0.4 mM GTP resulted in a partial conversion from high- to low-affinity state with a remaining high-affinity component of 15%. In globus pallidus, dopamine binding was not altered by GTP. The capability of GTP to modulate agonist binding to D2 receptors appears to be dependent on their neuroanatomical localization.  相似文献   

19.
The interactions of the neurotransmitter dopamine, and its precursor l-dopa, with membrane lipids were investigated through a set of molecular dynamic simulations with all atom resolution. The results obtained indicate that both dopamine and l-dopa have a pronounced association with the lipid head groups, predominantly mediated through H-bonds. As a result the molecules are anchored to the interfacial region of the membrane. The strength of this interaction is dependent on lipid composition - the presence of phosphatidylserine leads to an increase in the strength of this interaction, resulting in an H-bond network with a lifetime much longer than the timescale of our simulations. Also, bilayers that include sphingomieline and cholesterol interact strongly with dopamine and l-dopa. We postulate that the high membrane association that we have observed for both dopamine and l-dopa could have the following effects: 1) when on the plasma membrane exterior, favour the availability of these compounds for cell membrane uptake processes and, 2) when on an internal membrane surface, accentuate the importance of membrane-bound metabolizing enzymes over their soluble counterparts.  相似文献   

20.
The binding of spiroperidol and bromospiroperidol, in vivo, was studied over a wide range of drug dosages. It was found that while spiroperidol and bromospiroperidol bind selectively in vivo to tissues known to be high in dopamine receptor binding sites, this specificity of binding does not persist at very low doses. Such anomalous binding behavior can have implications for the non-invasive imaging of these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号