首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we demonstrated that aggregation of the high affinity IgE receptor in rat basophilic leukemia (RBL-2H3) cells results in rapid tyrosine phosphorylation of a 72-kDa protein (pp72). Here we investigated the relationship of pp72 phosphorylation to guanine nucleotide-binding protein (G protein) activation and phosphatidylinositol hydrolysis. The activation of G proteins by NaF in intact cells or by guanosine 5'-O-(3-thiotriphosphate) in streptolysin O-permeabilized cells induced both phosphatidylinositol hydrolysis and histamine release without tyrosine phosphorylation of pp72. Similarly, in RBL-2H3 cells expressing the G protein-coupled muscarinic acetylcholine receptor, carbachol activated phospholipase C and induced secretion without concomitant pp72 phosphorylation. Therefore, pp72 phosphorylation was not induced by G protein activation or as a consequence of phosphatidylinositol hydrolysis. To investigate whether pp72 tyrosine phosphorylation precedes the activation of phospholipase C, we studied the effect of the tyrosine kinase inhibitor genistein. Preincubation of cells with genistein decreased, in parallel, antigen-induced tyrosine phosphorylation of pp72 (IC50 = 34 micrograms/ml) and histamine release (IC50 = 31 micrograms/ml). However, genistein at concentrations of up to 60 micrograms/ml did not inhibit phosphatidylinositol hydrolysis nor did it change the amount of the secondary messenger inositol (1,4,5)-triphosphate. Previous observations showed that there was no pp72 tyrosine phosphorylation after activation of protein kinase C or after an increase in intracellular calcium. Taken together, these results suggest that pp72 tyrosine phosphorylation represents a distinct, independent signaling pathway induced specifically by aggregation of the Fc epsilon RI.  相似文献   

2.
Some tea polyphenolic compounds including (-)-epigallocatechin gallate (EGCG) have been shown to inhibit histamine release from mast cells through poorly understood mechanisms. By using a mast cell model rat basophilic leukemia (RBL-2H3) cells we explored the mechanism of the inhibition. EGCG inhibited histamine release from RBL-2H3 cells in response to antigen or the calcium-ionophore A23187, while (-)-epicatechin (EC) had little effect. Increased tyrosine phosphorylation of several proteins including approximately 120 kDa proteins occurred in parallel with the secretion induced by either stimulation. EGCG also inhibited tyrosine phosphorylation of the approximately 120-kDa proteins induced by either stimulation, whereas EC did not. The tyrosine kinase-specific inhibitor piceatannol inhibited the secretion and tyrosine phosphorylation of these proteins induced by either stimulation also. Further analysis showed that the focal adhesion kinase pp125(FAK) was one of the approximately 120-kDa proteins. These findings suggest that EGCG prevents histamine release from mast cells mainly by inhibiting tyrosine phosphorylation of proteins including pp125(FAK).  相似文献   

3.
Treatment of rat basophilic leukemia cells (RBL-2H3) with antigen or ionophore leads to an increase in cellular protein tyrosine phosphorylation. Three major proteins of molecular mass of 72, 92, and 110 kDa are targeted by antigen and a 110-kDa species by ionophore, A23187. The antigen- and ionophore-induced tyrosine phosphorylation responses are dose-dependent and correlate with increases in serotonin release from activated cells. The presence of extracellular Ca2+ is required to sustain the antigen- and ionophore-stimulated tyrosine phosphorylation as well as mediator release. A protein tyrosine kinase inhibitor, RG 50864, differentially inhibits the antigen-stimulated tyrosine phosphorylation in the decreasing order of 72, 91, and 110-kDa proteins. The compound inhibition of the 72-kDa protein tyrosine phosphorylation correlates with that of serotonin release. In ionophore-stimulated cells, the inhibition of the 110-kDa protein tyrosine phosphorylation and serotonin release by RG 50864 occurs in parallel. These results suggest that the 72- and 110-kDa phosphoproteins may represent the respective regulators of serotonin release in antigen- and ionophore-activated cells. The 110-kDa tyrosine phosphorylated proteins from antigen- and ionophore-stimulated cells exhibit identical electrophoretic mobility and V8 protease-generated phosphopeptide maps, suggesting that these two proteins may be the same. These results provide new evidence that both the stimulatory actions of antigen and ionophore on mediator release are mediated through enhanced protein tyrosine phosphorylation in RBL-2H3 cells. Significantly, the present study suggests the presence of multiple tyrosine phosphorylation signaling pathways in RBL cells and that their selective utility may be determined by the nature of the stimulus.  相似文献   

4.
Mast cells play a central role in immediate allergic reactions mediated by immunoglobulin E. It has recently been reported that mast cells generate intracellular reactive oxygen species (ROS) in response to stimulation with divergent physiologically relevant stimulants. However, the physiological role of ROS is poorly understood. Here we demonstrate that mast cell model rat basophilic leukemia (RBL-2H3) cells generate ROS in response to antigen and the calcium-ionophore A23187 via activation of diphenyleneiodonuim (DPI)-sensitive enzyme and that blockade of ROS generation by DPI suppresses histamine release induced by either stimulant. Increased tyrosine phosphorylation of pp125(FAK) and a 77-kDa protein coprecipitating specifically with the kinase occurred in parallel with the secretion, and blockade of ROS generation by DPI also suppressed the tyrosine phosphorylation of both proteins. These findings suggest that ROS generated by a flavoenzyme-dependent mechanism may be involved in histamine release through the pp125(FAK) pathway.  相似文献   

5.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

6.
Stimulation of rat basophilic leukemia (RBL-2H3) cells with oligomeric IgE elicited a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1 on tyrosine residues. Prior incubation of RBL-2H3 cells with a protein tyrosine kinase inhibitor, herbimycin A, prevented the tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of phosphatidylinositol 4,5-bisphosphate induced by oligomeric IgE. However, 5'-(N-ethyl)carboxamidoadenosine, which is known to activate PLC through a G protein, did not elicit tyrosine phosphorylation of PLC-gamma 1. These results, together with previous findings showing that tyrosine phosphorylation of PLC-gamma 1 enhances its catalytic activity, indicate that phosphorylation of PLC-gamma 1 by a nonreceptor tyrosine kinase is the mechanism by which IgE receptor aggregation triggers PLC activation.  相似文献   

7.
Stimulation of RBL-2H3 m1 mast cells through the IgE receptor with antigen, or through a G protein-coupled receptor with carbachol, leads to the rapid appearance of phosphothreonine in nonmuscle myosin heavy chain II-A (NMHC-IIA). We demonstrate that this results from phosphorylation of Thr-1940 by calcium/calmodulin-dependent protein kinase II (CaM kinase II), activated by increased intracellular calcium. The phosphorylation site in rodent NMHC-IIA was localized to the carboxyl terminus of NMHC-IIA distal to the coiled-coil region, and identified as Thr-1940 by site-directed mutagenesis. A fusion protein containing the NMHC-IIA carboxyl terminus was phosphorylated by CaM kinase II in vitro, while mutation of Thr-1940 to Ala eliminated phosphorylation. In contrast to rodents, in humans Thr-1940 is replaced by Ala, and human NMHC-IIA fusion protein was not phosphorylated by CaM kinase II unless Ala-1940 was mutated to Thr. Similarly, co-transfected Ala --> Thr-1940 human NMHC-IIA was phosphorylated by activated CaM kinase II in HeLa cells, while wild type was not. In RBL-2H3 m1 cells, inhibition of CaM kinase II decreased Thr-1940 phosphorylation, and inhibited release of the secretory granule marker hexosaminidase in response to carbachol but not to antigen. These data indicate a role for CaM kinase stimulation and resultant threonine phosphorylation of NMHC-IIA in RBL-2H3 m1 cell activation.  相似文献   

8.
Various inhibitors of phospholipases and serine/threonine kinases were used to determine whether activation of these enzymes was necessary for Ag-induced exocytosis in rat basophilic RBL-2H3 cells. Several inhibitors, however, inhibited events other than those intended in stimulated RBL-2H3 cells. Staurosporine and KT5926, inhibitors of protein kinase C and myosin L chain kinase, respectively, suppressed, in a dose-dependent manner, hydrolysis of inositol phospholipids, release of arachidonic acid, and exocytosis in cells stimulated with Ag or Ca(2+)-ionophore, A23187. Such generalized inhibition could also be induced in permeabilized cells with several peptide inhibitors of tyrosine kinases. All the above inhibitors suppressed Ag-induced tyrosine phosphorylation of several proteins, including phospholipase C gamma 1, and this suppression correlated with the inhibition of hydrolysis of inositol phospholipids and exocytosis. Three inhibitors of protein kinase C, Ro31-7549, calphostin C, and a peptide inhibitor, did not inhibit the tyrosine phosphorylation of proteins but selectively blocked exocytosis, presumably, by inhibiting protein kinase C. Thus, both tyrosine phosphorylation of proteins and the activation of protein kinase C were necessary events for hydrolysis of inositol phospholipids and exocytosis.  相似文献   

9.
The SH2-containing protein tyrosine phosphatase1 (SHP-1) is important for signaling from immune receptors. To investigate the role of SHP-1 in mast cells we overexpressed the wild-type and the phosphatase-inactive forms of SHP-1 in rat basophilic leukemia 2H3 (RBL-2H3) mast cell line. The phosphatase-inactive SHP-1 (C453S or D419A) retains its ability to bind tyrosine phosphorylated substrates and thereby competes with the endogenous wild-type enzyme. Overexpression of wild-type SHP-1 decreased the FcepsilonRI aggregation-induced tyrosine phosphorylation of the beta and gamma subunits of the receptor whereas the dominant negative SHP-1 enhanced phosphorylation. There were also similar changes in the tyrosine phosphorylation of Syk. However, receptor-induced histamine release in the cells expressing either wild-type or dominant negative SHP-1 was similar to that in the parental control cells. In contrast, compared with the parental RBL-2H3 cells, FcepsilonRI-induced c-Jun N-terminal kinase phosphorylation and the level of TNF-alpha mRNA was increased in the cells overexpressing wild-type SHP-1 whereas the dominant negative SHP-1 had the opposite effect. The substrate-trapping mutant SHP1/D419A identified pp25 and pp30 as two major potential substrates of SHP-1 in RBL-2H3 cells. Therefore, SHP-1 may play a role in allergy and inflammation by regulating mast cell cytokine production.  相似文献   

10.
Antiphosphotyrosine immunoblots were used to characterize tyrosine phosphorylated proteins after stimulation of the human TCR. Increased tyrosine phosphorylation was evident on at least 12 substrates within 2 min after ligation of the TCR with mAb. Analysis of the time course for increased tyrosine phosphorylation revealed distinct patterns. Increased phosphorylation of 135-kDa and 100-kDa substrates was evident within 5 s, whereas increased phosphorylation of the TCR-zeta-chain required several minutes after treatment with anti-CD3 mAb. This rapid cellular tyrosine phosphorylation occurred independent of the cell cycle, as it occurred after stimulation of resting T cells, T cell blasts, and the Jurkat T cell leukemia line. When the TCR complex was cross-linked together with the CD4 receptor by heteroconjugate anti-CD3/CD4 mAb, an increased magnitude of tyrosine phosphorylation occurred, although no new substrates could be detected. The increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates was specific in that anti-HLA class I, anti-CD6, anti-CD7, and anti-CD28 antibodies did not cause increased tyrosine phosphorylation. Anti-CD4 stimulation of resting T cells did not cause increased tyrosine phosphorylation of pp100 and pp135, suggesting that the CD4-associated kinase, lck, does not account for the tyrosine phosphorylation observed after TCR stimulation. Similarly, pharmacologic treatment of cells with phorbol ester and calcium ionophore did not cause increased tyrosine phosphorylation of these substrates, indicating that activation of protein kinase C or phospholipase C does not account for these early increases in tyrosine phosphorylation. The time of onset of pp100 phosphorylation, and the magnitude of phosphorylation correlated with the magnitude of calcium mobilization when cells were stimulated with different forms of TCR stimulation. When cells were labeled with [3H]myoinositol and analyzed after stimulation by anti-CD3 mAb, increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates preceded the activation of phospholipase C, as measured by the appearance of inositol 1,4,5-trisphosphate. This occurred in both T cell blasts and in the Jurkat T cell line. Thus, these findings show that increased tyrosine phosphorylation is the earliest yet detected signal observed after ligation of the TCR complex, and furthermore suggest that tyrosine phosphorylation might link the TCR to the phosphatidylinositolbisphosphate hydrolysis signaling pathway.  相似文献   

11.
mAb were selected that inhibited IgE-mediated histamine release from human basophils. The two mAb, HB 9AB6 and HB 10AB2, are of the IgG1 subclass and have a 50% inhibitory concentration of 0.16 to 1.1 micrograms/ml. The mAb required several hours of incubation with the basophils at 37 degrees C to induce maximum inhibition. Neither mAb directly released histamine from human basophils nor did they inhibit release induced by formylmethionine tripeptide, calcium ionophore A23187, or PMA. There was little inhibition of IgE-mediated release when the cells were preincubated with the mAb at 4 degrees C. By FACS analysis the 2 mAb bound to all peripheral blood leukocytes and immunoprecipitated a approximately 200-kDa protein from peripheral blood leukocytes and several cell lines of human origin. In binding studies and by sequential immunoprecipitation the 2 mAb and a known anti-CD45 mAb bound to the same protein. However, the mAb recognized different epitopes. Therefore, mAb to the CD45 surface Ag, a membrane protein tyrosine phosphatase, inhibits IgE-receptor mediated histamine release from human basophils. The data suggest a link between protein tyrosine phosphorylation and high affinity IgE receptor-mediated signal transduction in human basophils.  相似文献   

12.
A monoclonal antibody (mAb), AD1, was isolated that recognized a cell surface protein on rat basophilic leukemia cells (RBL-2H3). At high concentration, this antibody inhibited IgE-mediated but not calcium ionophore-induced histamine release (49% inhibition at 100 micrograms/ml). The mAb AD1 did not inhibit the binding of IgE or of several antibodies directed to the high affinity IgE receptor (Fc epsilon RI). Likewise, IgE did not inhibit mAb AD1 binding. However, several anti-Fc epsilon RI antibodies did inhibit mAb AD1 binding as intact molecules but not as Fab fragments. Therefore, the sites on the cell surface to which mAb AD1 binds are close to Fc epsilon RI. The mAb AD1 immunoprecipitated a broad, 50-60-kDa band from 125I-surface-labeled RBL-2H3 cells that upon peptide N-glycosidase F treatment was transformed into a sharp 27-kDa band. A similar 27-kDa protein was immunoprecipitated from surface-radiolabeled cells after culture with tunicamycin. Thus, the protein recognized by mAb AD1 is highly glycosylated with predominantly N-linked oligosaccharides. The N-terminal sequence of 43 amino acids was found to be different from any subunit of Fc epsilon RI but nearly identical to that of the human melanoma-associated antigen ME491. Therefore, mAb AD1 binds to a surface glycoprotein on RBL-2H3 cells sterically close to the Fc epsilon RI but distinct from the recognized subunits of the receptor.  相似文献   

13.
IgE-mediated stimulation of rat basophilic leukemia (RBL-2H3) cells results in the secretion of histamine. Myosin immunoprecipitated from these cells shows an increase in the amount of radioactive phosphate incorporated into its heavy (200 kDa) and light (20 kDa) chains. In unstimulated cells two-dimensional mapping of tryptic peptides of the myosin light chain reveals one phosphopeptide containing the serine residue phosphorylated by myosin light chain kinase. Following stimulation a second phosphopeptide appears containing a serine residue phosphorylated by protein kinase C. Tryptic phosphopeptide maps derived from myosin heavy chains show that unstimulated cells contain three major phosphopeptides. Following stimulation a new tryptic phosphopeptide appears containing a serine site phosphorylated by protein kinase C. The stoichiometry of phosphorylation of the myosin light and heavy chains was determined before and after antigenic stimulation. Before stimulation, myosin light chains contained 0.4 mol of phosphate/mol of light chain all confined to a serine not phosphorylated by protein kinase C. Cells that secreted 44% of their total histamine in 10 min exhibited an increase in phosphate content at sites phosphorylated by protein kinase C from 0 mol of phosphate/mol of myosin subunit to 0.7 mol of phosphate/mol of light chain and to 1 mol of phosphate/mol of heavy chain. When RBL-2H3 cells were made permeable with streptolysin O they still showed a qualitatively similar pattern of secretion and phosphorylation. Our results show that the time course of histamine secretion from stimulated RBL-2H3 cells parallels that of myosin heavy and light chain phosphorylation by protein kinase C.  相似文献   

14.
In rat basophilic leukemia-2H3 (RBL-2H3) and Madin-Darby canine kidney (MDCK) cells, cardiotoxin from cobra venom induced a marked decrease in the level of [3H] phosphatidylinositol and a corresponding increase in the level of [3H]phosphatidylinositol 4-monophosphate over the course of 20 min as demonstrated in cells that had been labeled to equilibrium with [3H]inositol. The effect was dependent on the concentration (5-30 micrograms/ml) of the toxin. In plasma membrane-enriched fractions isolated from the two cell lines, the cardiotoxin enhanced the endogenous activity of phosphatidylinositol kinase especially at temperatures above 14 degrees C. In RBL-2H3 cells, cardiotoxin also induced release of substantial amounts of histamine and lactate dehydrogenase. The release of histamine, but not of lactate dehydrogenase, was totally dependent on external calcium and this release probably represented an exocytotic response of the cells to cardiotoxin. Although, initially, treatment with the toxin did not impair antigen-induced hydrolysis of inositol phospholipids or prevent the antigen-induced rise in the concentration of cytosol Ca2+, prolonged exposure to the toxin did result in a progressive loss of responsiveness of RBL-2H3 cells to antigen.  相似文献   

15.
Abstract: In rat hippocampal slices and in neurons in primary culture, K+-induced depolarization increased markedly and rapidly tyrosine phosphorylation of a 110-kDa protein (pp110) and, to a lesser degree, of a 120-kDa protein (pp120), in a calcium-dependent fashion. Qlutamate, 1-aminocyclopentane- trans -1,3-dicarboxylic acid (an agonist of metabotropic glutamate receptors), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (an agonist of ionotropic glutamate receptors) stimulated also tyrosine phosphorylation of pp110 and pp120. These effects were not observed in astrocytes in primary culture. In hippocampal slices tyrosine phosphorylation of pp110 and pp120 was stimulated by Ca2+-ionophores and by phorbol esters and antagonized by a chelator of intracellular Ca2+and by drugs that inhibit protein kinase C. Stimulation of muscarinic and α1,-adrenergic receptors increased also tyrosine phosphorylation of pp110 and pp120. These results demonstrate that membrane depolarization and stimulation of neurotransmitter receptors activate a tyrosine phosphorylation pathway in neurons. This pathway involves an increase in intracellular Ca2+ concentrations and the activation of protein kinase C. It may provide a biochemical basis for some neurotrophic effects of electrical activity and neurotransmitters and may contribute to the role of tyrosine phosphorylation in long-term potentiation.  相似文献   

16.
Crosslinking of multivalent antigen bound IgE transduces FcepsilonRI mediated signaling cascades, which activate nonreceptor-type protein-tyrosine kinases and subsequent tyrosine phosphorylation of cellular proteins, and these are critical elements for degranulation in mast cells. We cloned a novel adaptor molecule, signal transducing adaptor protein (STAP)-2 containing PH and SH2-like domains as a c-fms interacting protein. STAP-2 was identical to a recently cloned adaptor molecule, BKS, a substrate of BRK (breast tumor kinase) tyrosine kinase, although its function is still unknown. To examine a novel function of STAP-2/BSK, we expressed STAP-2/BSK or its mutants in rat basophilic leukemia RBL-2H3 cells. Overexpression of STAP-2/BSK resulted in a suppression of FcepsilonRI-mediated calcium mobilization and degranulation. FcepsilonRI-induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) but not Syk was significantly suppressed in these cells. Furthermore, STAP-2/BSK associated with PLC-gamma in vivo. These data indicate that STAP-2/BSK negatively controls the FcepsilonRI-mediated calcium mobilization and degranulation by direct modulation of tyrosine phosphorylation of PLC-gamma.  相似文献   

17.
Diacylglycerol generated from inositolphospholipid hydrolysis and tumor-promoting phorbol esters stimulate protein kinase C. The synthetic diacylglycerol 1-oleoyl-2-acetyl-rac-glycerol and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) have been used in pure rat peritoneal mast cells. Both caused histamine release associated with exocytosis. The release by the stimulation of protein kinase C alone in the absence of secretagogues was slow although up to 50% of the histamine content was released by TPA in 120 min. Remarkable potentiation of histamine release was observed when the mast cells were preincubated with TPA before exposure to the calcium ionophore A23187. The potentiation of histamine release corresponded with an intensification of exocytosis. The potentiation is consistent with a participation of protein kinase C in the secretory process. An inhibitory effect due to protein kinase C activity was also demonstrated using TPA and mast cells from sensitized rats. When sensitized mast cells preincubated with 50 nM TPA for 5 min were exposed to the antigen, the histamine release was substantially reduced compared to the sum of the release by the antigen and TPA or by the antigen alone. There was a corresponding decrease in exocytosis. The inhibition of exocytosis and histamine release seems to reflect a regulatory function of protein kinase C for the termination of the response, as demonstrated in other types of cells apparently acting through an inhibition of inositolphospholipid hydrolysis.  相似文献   

18.
The protein tyrosine kinase Syk plays an essential role in Fc epsilon RI-mediated histamine release in mast cells by regulating the phosphorylation of other proteins. We investigated the functional role of a putative Syk phosphorylation site, Tyr317. This tyrosine in the linker region of Syk is a possible site for binding by the negative regulator Cbl. Syk with Tyr317 mutated to Phe (Y317F) was expressed in a Syk-negative variant of the RBL-2H3 mast cells. Compared with cells expressing wild-type Syk, expression of the Y317F mutant resulted in an increase in the Fc epsilon RI-mediated tyrosine phosphorylation of phospholipase C-gamma and a dramatic enhancement of histamine release. The in vivo Fc epsilon RI-induced tyrosine phosphorylation of wild-type Syk and that of the Y317F mutant were similar. Although the Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins was enhanced in the cells expressing the Y317F Syk, the phosphorylation of some other molecules, including the receptor subunits, Vav and mitogen-activated protein kinase, was not increased. The Fc epsilon RI-induced phosphorylation of Cbl was downstream of Syk kinase activity and was unchanged by expression of the Y317F mutation. These data indicate that Tyr317 in the linker region of Syk functions to negatively regulate the signals leading to degranulation.  相似文献   

19.
RBL-2H3 cells have been widely used to study histamine release in vitro. It was previously shown that these cells undergo striking morphological changes after IgE-mediated secretion. The present study was undertaken to examine if the morphological changes were dependent on activation of the Fc epsilon receptor. Therefore, the cells were stimulated to release histamine by two different mechanisms: activation of the Fc epsilon receptor by antigen and treatment with the calcium ionophore A23187. Cell surface and cytoskeletal changes were examined by fluorescence microscopy and scanning electron microscopy after either IgE- or ionophore-mediated histamine release. After exposure of the cells to either secretagogue, the cells spread over the surface of the culture dish and underwent rearrangement of the cytoskeleton. In addition, scanning electron microscopy revealed that deep ruffles developed on the surface of the cells undergoing IgE-mediated release. The surface changes were not as pronounced with the ionophore. The distribution of the cytoskeletal elements was examined by immunofluorescence using FITC-phalloidin and antibodies against vimentin and tubulin. In unstimulated cells actin was localized at the cell periphery, just under the plasma membrane. In the stimulated cells it was associated with the cell periphery and concentrated in the surface ruffles. As the stimulated cells spread, intermediate filaments and microtubules became distributed throughout the cell body, but there was no obvious association with the membrane ruffles. These morphological changes were dependent on the presence of extracellular calcium and on the concentration of ionophore or antigen, and were also correlated with the amount of histamine released. Additionally, IgE-mediated stimulation led to increased uptake of the soluble-phase tracer Lucifer yellow, whereas stimulation with the ionophore A23187 showed no increase in Lucifer yellow internalization. Ionophore A23187 produced changes similar but not identical to those seen in the RBL-2H3 cells after IgE-mediated histamine release. The differences may be owing to the involvement of the Fc epsilon receptor in IgE-mediated secretion.  相似文献   

20.
Mast cells play important roles in many biological responses, such as those during allergic diseases and inflammatory disorders. Although laser and UV irradiation have immunosuppressive effects on inflammatory diseases by suppressing mast cells, little is known about the effects of γ-ionizing radiation on mast cells. In this study, we investigated the effects of γ-ionizing radiation on RBL-2H3 cells, a convenient model system for studying regulated secretion by mast cells. Low-dose radiation (<0.1 gray (Gy)) did not induce cell death, but high-dose radiation (>0.5 Gy) induced apoptosis. Low-dose ionizing radiation significantly suppressed the release of mediators (histamine, β-hexosaminidase, IL-4, and tumor necrosis factor-α) from immunoglobulin E (IgE)-sensitized RBL-2H3 cells. To determine the mechanism of mediator release inhibition by ionizing radiation, we examined the activation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, PKCs, and MAPK, and intracellular free calcium concentrations ([Ca(2+)](i)). The phosphorylation of signaling molecules following stimulation of high-affinity IgE receptor I (FcεRI) was specifically inhibited by low-dose ionizing radiation (0.01 Gy). These results were due to the suppression of FcεRI expression by the low-dose ionizing radiation. Therefore, low-dose ionizing radiation (0.01 Gy) may function as a novel inhibitor of mast cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号