首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The omega-hydroxylation of leukotriene B4 (LTB4) by rat liver microsomes requires NADPH and molecular oxygen, suggesting that the hydroxylation is catalyzed by a cytochrome P-450 (P-450)-linked monooxygenase system. The reaction is inhibited by CO, and the inhibition is reversed by irradiation of light at 450 nm in a light-intensity-dependent manner. The extent of the reversal is strongly dependent on the wavelength of the light used, the 450-nm light is most efficient. The finding provides direct evidence for the identification of the LTB4 omega-hydroxylase as a P-450. The P-450 seems to be also responsible for prostaglandin A1 (PGA1) omega-hydroxylation, but not for lauric acid omega-hydroxylation. The LTB4 omega-hydroxylation is competitively inhibited by PGA1, but not affected by lauric acid. The Ki value for PGA1 of 38 microM agrees with the Km value for PGA1 omega-hydroxylation of 40 microM. LTB4 inhibits the PGA1 omega-hydroxylation by rat liver microsomes in a competitive manner with the Ki of 43 microM, which is consistent with the Km for the LTB4 omega-hydroxylation of 42 microM. An antiserum raised against rabbit pulmonary PG omega-hydroxylase (P-450p-2) inhibits slightly the omega-hydroxylations of LTB4 and PGA1, while it has stronger inhibitory effect on lauric acid omega-hydroxylation. In addition to NADPH-cytochrome P-450 reductase, cytochrome b5 appears to participate in the LTB4 omega-hydroxylating system, since the reaction is inhibited by an antibody raised against the cytochrome b5 as well as one raised against the reductase.  相似文献   

2.
The cell-free extract of a cytochrome P-450-producing fungus, Fusarium oxysporum, was found to catalyze the hydroxylation of fatty acids. Three product isomers were formed from a single fatty acid. The products from lauric acid were identified by mass-spectrometry as 9-, 10-, and 11-hydroxydodecanoic acids, and those from palmitic acid as 13-, 14-, and 15-hydroxyhexadecanoic acids. The ratio of the isomers formed was 50 : 36 : 14 in the case of laurate hydroxylation, and 37 : 47 : 16 in the case of palmitate. The reaction was dependent on both NADPH (or NADH) and molecular oxygen,and was strongly inhibited by carbon monoxide, menadione, or the antibody to purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450 with an apparent Kd of 0.3 mM. The hydroxylase activity together with cytochrome P-450 could be detected in both the soluble and microsome fractions, and the activity was almost proportional to the amount of cytochrome P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 is involved in the (omega-1)-, (omega-2)-, and (omega-3)-hydroxylation of fatty acids catalyzed by the cell-free extract of the fungus.  相似文献   

3.
A cell-free enzyme system capable of metabolizing abscisic acid has been obtained from Eastern Wild Cucumber (Echinocystis lobata Michx.) liquid endosperm. The reaction products were determined to be phaseic acid (PA) and dihydrophaseic acid (DPA) by co-chromatography on thin layer chromatograms as the free acids, methyl esters, and their respective oxidation or reduction products. The crude enzyme preparation was separated by centrifugation into a particulate abscisic acid (ABA)-hydroxylating activity and a soluble PA-reducing activity. The particulate ABA-hydroxylating enzyme showed a requirement for O2 and NADPH, inhibition by CO, and high substrate specificity for (+)-ABA. Acetylation of short term incubation mixtures gave evidence for the presence of 6′-hydroxymethyl-ABA as an intermediate in PA formation. Determinations of endogenous ABA and DPA concentrations suggest that the ABA-hydroxylating and PA-reducing enzymes are extensively metabolizing ABA in the intact E. lobata seed.  相似文献   

4.
A particulate fraction obtained from Alcaligenes faecalis could desaturate palmitic acid to palmitoleic acid. NADPH, ATP, CoA, Fe2+ and Mg2+ were essential cofactors for the reaction. The desaturation showed an absolute requirement for O2. Metal ions like Mn2+, Mo6+ and Cu2+ did not affect the desaturation, while Zn2+ was inhibitory. Sulfhydryl agents such as cysteine, glutathione and beta-mercaptoethanol had no effect, but SH-blocking agents like HgCl2 and p-hydroxymercuribenzoate inhibited the reaction. Azide and cyanide strongly inhibited the reaction while CO had no effect. The presence of a b-type cytochrome in the enzyme preparation was confirmed by the spectral studies on the reaction of enzyme with NADPH. Involvement of b-type cytochrome in the desaturation reaction was demonstrated by the reoxidation of b-type cytochrome initially reduced with NADPH, by the addition of palmitic acid and other cofactors. The pH optimum for the enzyme activity was 7.4. The optimum temperature for enzyme activity was 25 degrees C and maximum activity was obtained at the end of 45 min.  相似文献   

5.
—The conversion of [l-14C]palmitic acid to [1-14C]hexadecanol has been demonstrated with a cell-free system from developing rat brain. ATP, Coenzyme A and Mg2+ were required for the activity. Fatty aldehyde was found to be an intermediate in this reaction. The conversion of fatty acid to fatty alcohol was mainly localized in the microsomal fraction and the formation of hexadecanol showed absolute specificity towards NADPH while fatty aldehyde was formed even in the absence of exogenous reduced pyridine nucleotides. The brain microsomes showed maximal activity with stearic acid and the activities with palmitic and oleic acids were 65% and 38% respectively of that with stearic acid. This enzymic reduction increased with age and showed a maximum in the 15-day old rat brain.  相似文献   

6.
A microsomal fraction from etiolated Vicia sativa seedlings incubated aerobically with [1-14C]oleic acid (Z9-octadecenoic acid) or [1-14C]9,10-epoxystearic acid or [1-14C]9,10-dihydroxystearic acid catalyzed the NADPH-dependent formation of hydroxylated metabolites. The chemical structure of compounds formed from oleic, 9,10-epoxystearic or 9,10-dihydroxystearic acids was established by gas chromatography/mass spectra analysis to be 18-hydroxyoleic acid, 18-hydroxy-9,10-epoxystearic acid and 9,10,18-trihydroxystearic acid, respectively. The reactions required O2 and NADPH and were inhibited by carbon monoxide. As expected for monooxygenase reactions involving cytochrome P450, inhibition could be partially reversed by light and all three reactions were inhibited by antibodies raised against NADPH-cytochrome P450 reductase from Jerusalem artichoke. The omega-hydroxylation of the three substrates was enhanced in microsomes from clofibrate induced seedlings.  相似文献   

7.
Incubation of rat brain myelin with [3H]palmitic acid in the presence of ATP, CoA and MgCl2 or [14C]-palmitoyl-CoA in a cell-free system resulted in the selective labelling of 'PLP' [proteolipid protein; Folch & Lees (1951) J. Biol. Chem. 191, 807-817] and 'DM-20' [Agrawal, Burton, Fishman, Mitchell & Prensky (1972) J. Neurochem. 19, 2083-2089] which, after polyacrylamide-gel electrophoresis in SDS, were revealed by fluorography. These results provide evidence of the association of fatty acid-CoA ligase and acyltransferase in isolated myelin. Palmitic acid is covalently bound to PLP and DM-20, because 70 and 92% of the radioactivity was removed from proteolipid proteins after treatment with hydroxylamine and methanolic NaOH respectively. Incubation of myelin with [3H]palmitic acid in the absence of ATP, CoA, MgCl2, or all three, decreased incorporation of fatty acid into PLP to 3, 55, 18 and 2% respectively. The cell-free system exhibits specificity with respect to the chain length of the fatty acids, since myristic acid is incorporated into PLP at a lower rate when compared with palmitic and oleic acids. The acylation of PLP is an enzymic reaction, since (1) maximum incorporation of [3H]palmitic acid into PLP occurred at physiological temperatures and decreased with an increase in the temperature; (2) acylation of PLP with [3H]palmitic acid and [14C]palmitoyl-CoA was severely inhibited by SDS (0.05%); and (3) the incorporation of fatty acid and palmitoyl-CoA into PLP was substantially decreased by the process of freezing-thawing and freeze-drying of myelin. We have provided evidence that all of the enzymes required for acylation of PLP and DM-20 are present in isolated rat brain myelin. Acylation of PLP in a cell-free system with fatty acids and palmitoyl-CoA suggests that a presynthesized pool of non-acylated PLP and DM-20 is available for acylation.  相似文献   

8.
Mycolic acid synthesis by Mycobacterium aurum cell-free extracts   总被引:6,自引:0,他引:6  
The first cell-free system capable of synthesizing whole mycolic acids: (R1CH(OH)CH(R2)COOH, with 60 to 90 carbon atoms) from [1-14C]acetate is described and preliminary investigations into some of its requirements and properties are reported. Biosynthetic activity for mycolic acids occurred in an insoluble fraction (40 000 X g pellet) from disrupted cells of Mycobacterium aurum (ATCC 23366-type strain); it produced mycolic acids, but a very small amount of non-hydroxylated fatty acids. The predominant product was unsaturated mycolic acid (type I), while oxo- (type IV) and dicarboxy- (type VI) mycolic acids were synthesized to a lesser extent. When [1-14C]palmitic acid was used as a marker, no labelled mycolic acid was detected. The reaction required a divalent cation (Mg2+ or Mn2+), KHCO3 and O2. Neither CoA, NADH, NADPH nor ATP were necessary, but CoA rather increased the synthesis of non-hydroxylated fatty acids. Glucose or trehalose were not required. Avidin inhibited the biosynthesis of the three types of mycolic acid indicating the presence of a biotin-requiring enzyme in the reaction sequence and therefore a carboxylation step, but citrate had no allosteric effect. Iodoacetamide inhibited the system. These first data are in favor of a complex multienzyme system.  相似文献   

9.
Diesters of 3-hydroxy C8, C10, and C12 acids, the female mallard duck pheromones, were found as the major products of the uropygial glands only during the breeding season. The 3-hydroxy acids were identified by mass spectrometry of the trimethylsilyl ethers of the methyl esters and of the diols derived from LiAlH4 reduction of the hydroxy acids. A cell-free extract from the gland catalyzed conversion of dodecanoic acid to 3-hydroxydodecanoic acid which was identified by radio thin-layer and radio gas chromatographic analysis of the enzymic products as methyl-3-acetoxydodecanoate and as diacetate of the diol generated by LiAlH4 reduction of the enzymic product. The enzymic introduction of the hydroxyl group at C-3 was catalyzed mainly by a 50,000g pellet prepared from a 1000g supernatant obtained from the cell-free extract. This reaction required ATP, CoA, and O2, and the CoA ester of the acid was more efficiently converted than the free acid to the 3-hydroxy acid. KCN at 1 mM and 50% CO did not inhibit the reaction. 3H from 3H2O was incorporated into 3-hydroxydodecanoic acid during the enzymic synthesis of this acid from dodecanoic acid. Mass spectrometry of the 3-hydroxy acid generated by the particulate fraction in the presence of H2 18O showed that 18O was incorporated as expected from hydration of a delta 2 double bond. From the above results it is tentatively concluded that peroxisomal acyl-CoA oxidase converts the acyl-CoA to the 2-enoyl-CoA which is hydrated to generate the 3-hydroxy acid.  相似文献   

10.
Leukotriene B4 (LTB4), a potent chemotactic agent, was catabolized to 20-hydroxyleukotriene B4 (20-OH-LTB4) by the 150,000 x g pellet (microsomal fraction) of human neutrophil sonicate. The reaction required molecular oxygen and NADPH, and was significantly inhibited by carbon monoxide, suggesting that a cytochrome P-450 is involved. The neutrophil microsomal fraction showed a carbon monoxide difference spectrum with a peak at 450 nm in the presence of NADPH or dithionite, indicating the presence of a cytochrome P-450. The addition of LTB4 to the microsomal fraction gave a type-I spectral change with a peak at around 390 nm and a trough at 422 nm, indicating a direct interaction of LTB4 with the cytochrome P-450. The dissociation constant of LTB4, determined from the difference spectra, is 0.40 microM, in agreement with the kinetically determined apparent Km value for LTB4 (0.30 microM). Such a spectral change was not observed with prostaglandins A1, E1 and F2 alpha or lauric acid, none of which inhibited the LTB4 omega-hydroxylation. The inhibition of the LTB4 omega-hydroxylation by carbon monoxide was effectively reversed by irradiation with monochromatic light of 450 nm wavelength. The photochemical action spectrum of the light reversal of the inhibition corresponded remarkably well with the carbon monoxide difference spectrum. These observations provide direct evidence that the oxygen-activating component of the LTB4 omega-hydroxylase system is a cytochrome P-450. Ferricytochrome c inhibited the hydroxylation of LTB4 and the inhibition was fortified by cytochrome oxidase. An antibody raised against rat liver NADPH-cytochrome-P-450 reductase inhibited both LTB4 omega-hydroxylase activity and the NADPH-cytochrome-c reductase activity of human neutrophil microsomal fraction. These observations indicate that NADPH-cytochrome-P-450 reductase acts as an electron carrier in LTB4 omega-hydroxylase. On the other hand, an antibody raised against rat liver microsomal cytochrome b5 inhibited the NADH-cytochrome-c reductase activity but not the LTB4 omega-hydroxylase activity of human neutrophil microsomal fraction, suggesting that cytochrome b5 does not participate in the LTB4-hydroxylating system. These characteristics indicate that the isoenzyme of cytochrome P-450 in human neutrophils, LTB4 omega-hydroxylase, is different from the ones reported to be involved in omega-hydroxylation reactions of prostaglandins and fatty acids.  相似文献   

11.
Resting cells of Escherichia coli strain D302(bioD302) can synthesize 7,8-diaminopelargonic acid from 7-keto-8-aminopelargonic acid. The product of this aminotransferase reaction has been identified by paper chromatography and electrophoresis. Glucose enhances the vitamer yield twofold. Of the 19 amino acids tested as amino donors, only methionine proved to be significantly stimulatory. In cell-free extracts, however, methionine was completely inactive unless both adenosine triphosphate (ATP) and Mg(2+) were present. S-Adenosyl-l-methionine (SAM) was about 10 times more effective than methionine, ATP, and Mg(2+). The optimal conditions for the reaction were determined, and substrate inhibition was found for 7-keto-8-aminopelargonic acid. It has been possible to eliminate certain impurities as amino donors in the commercial preparation of SAM and those that may arise in enzymatic reactions in which SAM is a substrate. The direct participation of SAM in the aminotransferase reaction seems a likely possibility.  相似文献   

12.
Oxidation of fatty alcohols to acids in gourami caeca was investigated by measuring the reduction of NAD+ and the formation of labeled hexadecanoic acid from [1(-14)C]hexadecanol. Virtually all dehydrogenase activity is in the microsomal fraction. Maximal activity is obtained with NAD+ as cofactor whereas with NADP+ 60% of that activity is obtained. The enzyme is rather specific for long chain alcohols and 2 NADH are formed for each molecule of hexadecanol oxidized to acid. It is stabilized by mercaptoethanol, and completely inhibited by p-chloromercuribenzoate. The activity is optimal at pH 9.5. At higher pH, small amounts of aldehyde are found. The first reaction in the sequence, fatty alcohol leads to aldehyde leads to acid seems to occur under the more physiological condition at a much slower rate than the second reaction so that free aldehyde is not detected. Addition of palmitic acid indicated an uncompetitive product inhibition. The oxidation of alcohol to acid is reversible only to a very minor extent even in the presence of NADPH, CoA, ATP and Mg2+. Location, activity and properties of the enzyme are in agreement with the earlier observation from dietary experiments that in the gourami fatty alcohols of wax esters are oxidized to acids in the course of absorption.  相似文献   

13.
Epididymal 5alpha reductase activity was found distitributed in the crude nuclear fraction (44 percent) and microsomal fraction (41 percent). Spermatozoa contaminating the nuclear preparation accounted for only 3 percent of its activity. There were no regional differences in the distribution of total 5alpha reductase activity. However, the nuclear enzyme was more active in caput than in other regions. Maximal activity was found at pH 6.2 and at 32 degrees C. Both enzymes had an absolute requirement of reduced dinucleotides. The microsomal preparation could only us NADPH while the nuclear enzyme could use NADPH and NADH. The apparent Km for the microsomal preparation was 0.62 +/- 0.05 X 10(-6)M and Vmax was 555 +/- 38 pmoles/mg protein/hour. The nuclear enzyme presented similar values. The reaction was not inhibited by accumulation of product in the medium, but other steroids such as progesterone, epitestosterone (17alpha-hydroxy-4-androsten-3-one) and 3-oxo-4-androstene-17beta-carboxylic acid were potent competitive inhibitors. The reaction was strongly inhibited by Hg, Zn and Cu. The properties of the epididymal reductase are similar to those of the prostatic enzyme.  相似文献   

14.
Phospholipase A2, which is localized in the mucosal part of the corpus of rat stomach (Hirohara et al. (1987) Biochim. Biophys. Acta 919, 231-238), was purified 990-fold from the supernatant of a tissue homogenate by heat treatment at acidic pH, ammonium sulfate fractionation, ion-exchange chromatography, gel-filtration and reverse-phase high-performance liquid chromatography (reverse-phase HPLC). The purified enzyme gave a single protein band on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with a molecular mass of approx. 17 kDa. The enzyme had a pH optimum of 8.0 and hydrolyzed the 2-arachidonoyl residue of phosphatidylcholine preferentially to the 2-oleoyl residue, the Vmax and Km values for the two being 227 and 29 mumol/min per mg protein and 0.037 and 0.019 mM, respectively. The activity was calcium-dependent and was markedly increased by SDS and dimethyl sulfoxide (DMSO). The enzyme showed typical product inhibition. Free unsaturated fatty acids (oleic, arachidonic and docosahexaenoic acids), which are supposedly the main enzymatic products in vivo, inhibited the activity. Arachidonic acid caused noncompetitive inhibition and its concentration for its maximal inhibition (50% inhibition) was 5 x 10(-5) M. Lysophosphatidylcholine, free saturated fatty acids (palmitic and stearic acids) and arachidonic acid metabolites (leukotrienes and prostaglandins) had no effect on the activity.  相似文献   

15.
Effects of fatty acids on lysis of Streptococcus faecalis.   总被引:6,自引:5,他引:1       下载免费PDF全文
Palmitic, stearic, oleic, and linoleic acids at concentrations of 200 nmol/ml all inhibited autolysin activity 80% or more in whole cells or cell-free extracts. This concentration of the saturated fatty acids palmitic acid and stearic acid had little or no effect on the growth of whole cells or protoplasts. However, the unsaturated fatty acids oleic acid and linoleic acid induced lysis in both situations. This lytic effect is apparently not related to any uncoupling activity or inhibition of energy catabolism by unsaturated fatty acids. It is concluded that unsaturated fatty acids induce cell and protoplast lysis by acting as more potent membrane destabilizers than saturated fatty acids.  相似文献   

16.
d-Desthiobiotin synthetase, an enzyme that catalyzes the synthesis of d-desthiobiotin from dl-7,8-diaminopelargonic acid and HCO(3) (-), was purified 100-fold from cells of a biotin mutant strain of Escherichia coli. Adenosine triphosphate and Mg(2+) were shown, especially in purified extracts, to be obligatory for enzyme activity, although concentrations higher than 5 mm caused severe inhibition of the reaction with unpurified cell-free extracts. Adenosine diphosphate and adenosine monophosphate were shown to inhibit the reaction, but fluoride (up to 50 mm) had no detectable effect. The product of the enzyme reaction was identical to d-desthiobiotin on the basis of biological activity and chromatography. Furthermore, when H(14)CO(3) (-) was used as a substrate, the radioactive product was shown to be (14)C-desthiobiotin labeled exclusively in the ureido carbon.  相似文献   

17.
Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits. These effects were mediated by activation of NADPH oxidase. That is, these acids reproduced mitochondrial dysfunction found in humans and animals with nonalcoholic steatohepatitis.KEY WORDS: Mitochondrial respiratory chain, Nonalcoholic steatohepatitis, NADPH oxidase, Oxidative phosphorylation, Proteomic, Nitro-oxidative stress, OXPHOS  相似文献   

18.
NADPH oxidase activity in a membrane fraction prepared from phorbol 12-myristate 13-acetate (PMA)-stimulated guinea pig polymorphonuclear leukocytes (PMNL) was inhibited by positively charged myristylamine. The inhibitory effect of myristylamine was significantly suppressed by simultaneous addition of a negatively charged fatty acid, such as myristic acid. However, the suppression by myristylamine was not sufficiently restored when myristic acid was added later. On the other hand, pretreatment of PMA-stimulated PMNL with glutaraldehyde, a protein crosslinking reagent, stabilized NADPH oxidase activity against inhibition by myristylamine, but not against that by p-chloromercuribenzenesulfonic acid. In a cell-free system of reconstituted plasma membrane and cytosolic fractions prepared from unstimulated PMNL, arachidonic acid-stimulated NADPH oxidase activity was also inhibited by myristylamine. During the activation of NADPH oxidase by PMA in intact PMNL and by arachidonic acid in the cell-free system, cytosolic activation factor(s) translocated to plasma membranes. The bound cytosolic activation factor(s) was released from the membranes by myristylamine, accompanied by a loss of NADPH oxidase activity. It is plausible from these results that the inhibitory effect of alkylamine on NADPH oxidase is due to induction of the decoupling and/or dissociation of the cytosolic activation component(s) from the activated NADPH oxidase complex by increments of positive charges in the membranes, and that the glutaraldehyde treatment prevents the dissociation of component(s).  相似文献   

19.
When Micrococcus sp. which was isolated from soil assimilated azelaic acid as a sole carbon source, cell-free extract of the organism catalyzed enzymic fatty acid hydroxamate formation. The enzyme was effective only for mono-carboxylic acid, but not for di-carboxylic acids such as azelaic acid. The activity was high with higher fatty acid such as oleic acid. Some of the properties of higher fatty acid hydroxamate formation were investigated.

Olelylhydroxamate was formed with the high concentration of hydroxylamine. The reaction was inhibited by PCMB, but recovered by the addition of SH-compounds (such as cysteine).

On the other hand, when methylacetate was used as a sole carbon source and cell-free extract of Micrococcus sp. hydrolyzed several fatty acid esters. The fatty acid hydroxamate degradation by esterolysis are also discussed.  相似文献   

20.
This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号