首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Isolated HeLa cell nuclei were employed to catalyze the synthesis of RNA in vitro. In the presence of low concentrations of alpha-amanitin (1 mug/ml), used to suppress the formation heterogeneous nRNA, these nuclei synthesize RNA very efficiently for extended periods of time (at least 60 min) at an elongation rate of about seven nucleotides per second. The product, analyzed on sucrose density gradients and polyacrylamide gels was found to exist of two predominant size classes. Synthesis of the 45-S ribosomal precursor was completely resistant even to high concentrations of alpha-amanitin (150 mug/ml) and hence was catalyzed by enzyme A (or I). A limited degree of processing of the 45-S precursor occurred in vitro. In addition, a second RNA class of low molecular weight (4-8 S) was synthesized by HeLa cell nuclei in the presence of 1 mug/ml alpha-amanitin in vitro. Analysis on 8% polyacrylamide gels resolved the RNA into four distinct components. Their synthesis was resistant to low (1 mug/ml) but clearly sensitive to high (150 mug/ml) concentrations of alpha-amanitin. Consequently the synthesis of all these small-molecular-weight RNA species is catalyzed by RNA polymerase C (or III). For the assessment of the initiation frequency of the individual classes of RNA, a new technique was developed independent of labelling the 5' end of the RNA molecule with the gamma-phosphate of the initiating nucleotide. It employs the double labelling of an RNA molecule with two different isotopes added sequentially at different stages of completion of the chain. From the incorporation ratio of the two isotopes into a particular class of RNA, conclusions can be drawn concerning their initiation frequency. The results obtained have shown a high reinitiation frequency for the small-molecular-weight RNA species at all stages of the incubation reaction. In contrast, reinitiation of the 45-S precursor RNA occurs only to a limited extent in isolated HeLa cell nuclei in vitro.  相似文献   

6.
7.
8.
S A Fuhrman  G N Gill 《Biochemistry》1975,14(13):2925-2933
In the presence of 50 mM (NH4)2SO4 and low concentrations of alpha-amanitin (7.7 mug/ml), adrenal nuclei synthesize predominately rRNA as characterized by size and base composition. Approximately 10% of the RNA synthesized under these conditions sediments at 4-5 S; this RNA synthesizing activity is inhibited by high concentrations of alpha-amanitin (231 mug/ml) indicating the presence of RNA polymerase III activity. ACTH administration to guinea pigs results in a twofold increase in adrenal nuclear RNA polymerase I and III activities at 14 hr of hormone treatment. Analysis of the amount of radiolabeled nucleoside triphosphate incorporated in vitro into 3' chain termini and into internal nucleotide positions has been utilized to measure the number of RNA chains and the average chain length synthesized in vitro. Incorporation into 3' chain termini is not changed by ACTH; incorporation into internal nucleotides is doubled in parallel with the increase in RNA polymerase I activity. These results are not due to an altered Km of RNA polymerase I for the four nucleoside triphosphates, nor to differential R Nase or phosphatase activity. These studies suggest that the regulation of RNA polymerase I by ACTH is accomplished in part through an increase in the rate of RNA chain elongation.  相似文献   

9.
Effects of alpha-amanitin on RNA synthesis by mouse embryos in culture   总被引:1,自引:0,他引:1  
Investigations were conducted to test the effects of alpha-amanitin on RNA synthesis in preimplantation mouse embryos. Exposure of embryos in culture to 1-100 microgram/ml alpha-amanitin produced a dose- and time-dependence suppression of total RNA synthesis as measured by incorporation of [3H]uridine. Synthesis of polyadenylated RNA in blastocyst-stage embryos was abolished by alpha-amanitin-treatment at concentrations and exposure times that suppressed total RNA synthesis by less than 15%. DNA-dependent RNA polymerase activity was measured in lysates of embryos at several stages of preimplantation development. alpha-Amanitin suppressed total polymerase activity assayed under ionic conditions favorable to the detection of RNA polymerase II. Electrophoretic analyses revealed that preincubation of blastocysts in 100 microgram/ml alpha-amanitin reduced labelling of cytoplasmic 28S and 18S RNA by inhibition of both synthesis and maturation of nucleolar 45SrRNA-precursor. This action of alpha-amanitin on nucleolar RNA synthesis cannot be correlated with the minimal suppression of nucleolar RNA polymerase activity and suggests that the synthesis and processing of rRNA may be under control of nucleoplasmic gene products.  相似文献   

10.
Nuclei isolated from mouse myeloma cells grown in tissue culture are capable of synthesizing RNA for prolonged periods of time. Addition of cytoplasmic extracts to the system stimulates slightly the rate and prolongs the time of synthesis. As judges by sedimentation in SDS and in formamide gradients, the size of the RNA synthesized is heterogeneous from smaller than 10S to larger than 45S, thus resembling in vivo made RNA. The characteristics of some of the RNA are in keeping with those expected to be for mRNA. Fifty percent of the RNA synthesis is sensitive to alpha-amanitin. After an incubation of two hours in the absence of alpha-amanitin about 10 percent of the newly synthesized RNA is found outside of the nuclei; it sediments with a broad distribution at 18S. A considerable fraction of the RNA that is released from nuclei in vitro can promote the formation of polyribosomes, and contains molecules that are polyadenylated and "capped".  相似文献   

11.
The effects of monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4(+)) on the thermal stability of RNA tertiary structure were investigated by UV melting. We show that with the RNA used here (nucleotides 1051-1108 of Escherichia coli 23 S rRNA with four base substitutions), monovalent cations and Mg(2+) compete in stabilizing the RNA tertiary structure, and that the competition takes place between two boundaries: one where Mg(2+) concentration is zero and the other where it is maximally stabilizing ("saturating"). The pattern of competition is the same for all monovalent cations and depends on the cation's ability to displace Mg(2+) from the RNA, its ability to stabilize tertiary structure in the absence of Mg(2+), and its ability to stabilize tertiary structure at saturating Mg(2+) concentrations. The stabilizing ability of a monovalent cation depends on its unhydrated ionic radius, and at a low monovalent cation concentration and saturating Mg(2+), there is a (calculated) net release of a single monovalent cation/RNA molecule when tertiary structure is denatured. The implications are that under these conditions there is at least one binding site for monovalent cations on the RNA, the site is specifically associated with formation of stable tertiary structure, K(+) is the most effective of the tested cations, and Mg(2+) appears ineffective at this site. At high ionic strength, and in the absence of Mg(2+), stabilization of tertiary structure is still monovalent-cation specific and ionic-radius dependent, but a larger number of cations ( approximately eight) are released upon RNA tertiary structure denaturation, and NH(4)(+) appears to be the most effective cation in stabilizing tertiary structure under these conditions. In the majority of the experiments, methanol was added as a cosolvent to the buffer. Its use allowed the examination of the behavior of monovalent ions under conditions where their effects would otherwise have been too weak to be observed. Methanol stabilizes tertiary but not secondary structure of the RNA. There was no evidence that it either causes qualitative changes in cation-binding properties of the RNA or a change in the pattern of monovalent cation/Mg(2+) competition.  相似文献   

12.
13.
14.
15.
Nuclei isolated from embryos of wheat (var. Yamhill) incorporated [(3)H]UTP into a trichloroacetic acid-insoluble product linearly for 60 minutes. When the RNA synthesized in vitro was analyzed on a sucrose gradient, the amount of RNA in the 4S region increased with longer incubation times. These data and the absence of higher molecular weight RNA of specific size classes in our work (and previously published reports) suggested that nuclear fractions from plant tissue contained active nucleases. This was confirmed when wheat nuclei were mixed with [(3)H]yeast RNA (4, 18, 26S). All of the radioactive yeast RNA was degraded within 30 minutes to species sedimenting between 4 and 10S. The inclusion of high salt (125 millimolar (NH(4))(2)SO(4), 100 millimolar KCl), EGTA, and exogenous RNA or DNA reduced but did not eliminate endogenous RNase activity. Wheat embryo nuclei were further purified by centrifugation on a gradient of a polyvinylpyrrolidone-coated colloidal silica suspension (Percoll). These nuclei were ellipsoidal, free of cytoplasmic material, and lacked endogenous nuclease activity when assayed with [(3)H]yeast RNA. Sucrose gradients were not as effective as Percoll gradients in purifying nuclei free of RNase activity. The Percoll method of isolating nuclei and the RNase assay reported here will be useful in isolating plant nuclei that are capable of synthesizing distinct RNA species in vitro.  相似文献   

16.
17.
DNA dependent RNA polymerase activities in isolated bovine thyroid nuclei and nucleoli have been studied. They retain their RNA synthetic activity for an extended period of time. This RNA synthetic activity is sensitive to actinomycin D and requires the presence of all four ribonucleoside triphosphates. The optimal conditions have been determined. Polyacrylamide gel electrophoresis reveals that the RNA synthesized has a size distribution ranging from 34S to 4S. The production of 18S-8S RNA is very sensitive to low concentrations of alpha-amanitin. However, in isolated bovine thyroid nuclei (not in nucleoli) this drug displays an effect on all RNA classes produced. The alpha-amanitin induced drastic decrease of [3H]-UMP incorporation in RNA of all sizes synthesized by isolated bovine thyroid nuclei is discussed.  相似文献   

18.
An endoplasmic-reticulum-DNA-polymerase complex was prepared from unfertilized sea urchin eggs and its DNA-synthesizing activity was examined using single-stranded DNA of bacteriophage fd as a template. The complex catalyzed the ribonucleotide-dependent DNA synthesis which required dNTPs, NTPs, Mg2+ and single-stranded DNA. The DNA synthesis was sensitive to aphidicolin and N-ethylmaleimide but was resistant to 2',3'-dideoxyribosylthymine 5'-triphosphate (ddTTP) and alpha-amanitin, suggesting the involvement of DNA polymerase alpha. In parallel with the DNA synthesis, a small amount of RNA was synthesized in the presence of 100 micrograms/ml alpha-amanitin. The Km value of ribonucleotides for the RNA synthesis coincided with that for the DNA synthesis, suggesting a correlation between the DNA and RNA syntheses. Labelling of the products with [gamma-32P]ATP followed by DNA digestion with pancreatic DNase I revealed the attachment of an oligoribonucleotide (7-11 bases in length) at the 5' ends of the DNA products. These observations suggest that in DNA synthesis, primer RNA synthesis occurs first, followed by DNA chain elongation. During 1-90-min incubation, the amount of the DNA synthesized increased but the length was not significantly increased. Over 80% of the number of synthesized DNA molecules comprised a single population of short DNA fragments (60-200 bases, on average 120 bases in length) and the number of fragments increased, depending on the incubation time. However, DNA fragments of various sizes (about 100-6000 bases) were synthesized with DNA polymerase alpha solubilized from the endoplasmic-reticulum-DNA-polymerase complex. All this evidence suggests that in vitro, the complex preferentially synthesizes a particular size of short DNA fragments. The significance of the fragments is discussed.  相似文献   

19.
alpha-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of alpha-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of alpha-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10-20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by alpha-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号