首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine carbamoyltransferase (OCT) activity was detected in extracts from mature leaves, fruit, germinating seeds, and seedlings of Vitis vinifera L. Michaelis-Menten constants for OCT were 3.5 millimolar for carbamyl phosphate and 5.5 millimolar for l-ornithine. Concentrations of l-ornithine greater than 10 millimolar slightly inhibited the enzyme, whereas carbamyl phosphate at concentrations greater than the optimal (about 10 millimolar) did not affect OCT activity. l-Citrulline formation was linear with incubation period for the first 25 minutes and with increasing amounts of enzyme up to an equivalent of about 200 milligrams of fresh tissue. The optimum pH for in vitro OCT activity was between 8.4 and 8.8, and the optimum incubation temperature was 38 C.  相似文献   

2.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms.  相似文献   

3.
Aspartate transcarbamylase (EC 2.1.3.2) was purified to homogeniety from germinated mung bean seedlings by treatment with carbamyl phosphate. The purified enzyme was a hexamer with a subunit molecular weight of 20,600. The enzyme exhibited multiple activity bands on Polyacrylamide gel electrophoresis, which could be altered by treatment with carbamyl phosphate or UMP indicating that the enzyme was probably undergoing reversible association or dissociation in the presence of these effectors. The carbamyl phosphate stabilized enzyme did not exhibit positive homotropic interactions with carbamyl phosphate and hysteresis. The enzyme which had not been exposed to carbamyl phosphate showed a decrease in specific activity with a change in the concentration of both carbamyl phosphate and protein. The carbamyl phosphate saturation and UMP inhibition patterns were complex with a maximum and a plateau region. The partially purified enzyme also exhibited hysteresis and the hysteretic response, a function of protein concentration, was abolished by preincubation with carbamyl phosphate and enhanced by preincubation with UMP. All these observations are compatible with a postulation that the enzyme activity may be regulated by slow reversible association-dissociation dependent on the interaction with allosteric ligands  相似文献   

4.
Site-directed mutagenesis was used to create four mutant versions of Escherichia coli aspartate transcarbamylase at three positions in the catalytic chain of the enzyme. The location of all the amino acid substitutions was near the carbamyl phosphate binding site as previously determined by X-ray crystallography. Arg-54, which interacts with both the anhydride oxygen and a phosphate oxygen of carbamyl phosphate, was replaced by alanine. This mutant enzyme was approximately 17,000-fold less active than the wild type, although the binding of substrates and substrate analogues was not altered substantially. Arg-105, which interacts with both the carbonyl oxygen and a phosphate oxygen of carbamyl phosphate, was replaced by alanine. This mutant enzyme exhibited an approximate 1000-fold loss of activity, while the activity of catalytic subunit isolated from this mutant enzyme was reduced by 170-fold compared to the wild-type catalytic subunit. The KD of carbamyl phosphate and the inhibition constants for acetyl phosphate and N-(phosphono-acetyl)-L-aspartate (PALA) were increased substantially by this amino acid substitution. Furthermore, this loss in substrate and substrate analogue binding can be correlated with the large increases in the aspartate and carbamyl phosphate concentrations at half of the maximum observed specific activity, [S]0.5. Gln-137, which interacts with the amino group of carbamyl phosphate, was replaced by both asparagine and alanine. The asparagine mutant exhibited only a small reduction in activity while the alanine mutant was approximately 50-fold less active than the wild type. The catalytic subunits of both these mutant enzymes were substantially more active than the corresponding holoenzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   

6.
Van Boxstael S  Maes D  Cunin R 《The FEBS journal》2005,272(11):2670-2683
Aspartate transcarbamylase (ATCase) (EC 2.1.3.2) from the hyperthermophilic archaeon Pyrococcus abyssi was purified from recombinant Escherichia coli cells. The enzyme has the molecular organization of class B microbial aspartate transcarbamylases whose prototype is the E. coli enzyme. P. abyssi ATCase is cooperative towards aspartate. Despite constraints imposed by adaptation to high temperature, the transition between T- and R-states involves significant changes in the quaternary structure, which were detected by analytical ultracentrifugation. The enzyme is allosterically regulated by ATP (activator) and by CTP and UTP (inhibitors). Nucleotide competition experiments showed that these effectors compete for the same sites. At least two regulatory properties distinguish P. abyssi ATCase from E. coli ATCase: (a) UTP by itself is an inhibitor; (b) whereas ATP and UTP act at millimolar concentrations, CTP inhibits at micromolar concentrations, suggesting that in P. abyssi, inhibition by CTP is the major control of enzyme activity. While V(max) increased with temperature, cooperative and allosteric effects were little or not affected, showing that molecular adaptation to high temperature allows the flexibility required to form the appropriate networks of interactions. In contrast to the same enzyme in P. abyssi cellular extracts, the pure enzyme is inhibited by the carbamyl phosphate analogue phosphonacetate; this difference supports the idea that in native cells ATCase interacts with carbamyl phosphate synthetase to channel the highly thermolabile carbamyl phosphate.  相似文献   

7.
Lu TS  Mazelis M 《Plant physiology》1975,55(3):502-506
ORNITHINE: 2-oxoacid aminotransferase (EC 2.6.1.13) has been purified over 400-fold with a total recovery of 14% from acetone powders of cotyledons of germinating squash (Cucurbita pepo, L.) seedlings. The pH optimum of the transamination between l-ornithine and alpha-ketoglutarate is 8 and the Michaelis constants are 4.7 mm and 6.3 mm, respectively. The enzyme has a molecular weight of 48,000 as determined by gel filtration. The reaction is essentially specific for alpha-ketoglutarate as the amino group acceptor. The enzyme is inhibited very strongly by hydroxylamine, and less severely by NaCN and isonicotinylhydrazide. No inhibition is observed in the presence of 10 mml-cysteine. The energy of activation is 7.6 kcal/mole. The stability of the enzyme preparation is enhanced by the presence of dithioerythritol and glycerol. The enzyme activity of the most purified fraction is stimulated 30% by the addition of pyridoxal phosphate; however, the evidence for the unequivocal involvement of pyridoxal phosphate was inconclusive.  相似文献   

8.
The number and properties of carbamyl phosphate synthetases in Bacillus subtilis have been uncertain because of conflicting genetic results and instability of the enzyme in extracts. The discovery of a previously unrecognized requirement of B. subtilis carbamyl phosphate synthetases for a high concentration of potassium ions for activity and stability permitted unequivocal demonstration that this bacterium elaborates two carbamyl phosphate synthetases. Carbamyl phosphate synthetase A was shown to be repressed by arginine, to have a molecular weight of about 200,000, and to be coded for by a gene that maps near argC4. This isozyme was insensitive to metabolites of the arginine and pyrimidine biosynthetic pathways. Carbamyl phosphate synthetase P was found to be repressed by uracil, to have a molecular weight of 90,000 to 100,000, and to be coded for by a gene that maps near the other pyr genes. This isozyme was activated by phosphoridine nucleotides. Other kinetic properties of the two isozymes were compared. Bacillus thus resembles eucaryotic microbes in producing two carbamyl phosphate synthetases, rather than the enteric bacteria, which produce a single carbamyl phosphate synthetase.  相似文献   

9.
O'neal TD 《Plant physiology》1975,55(6):975-977
An enzyme was extensively purified from jack bean leaves (Canavalia ensiformis L.) which produced o-ureidohomoserine from l-canaline and carbamyl phosphate. The most highly purified preparations catalyzed both this reaction and citrulline synthesis from ornithine and carbamyl phosphate, and the ratio of the two activities remained nearly constant during purification. When hydrated jack bean seeds were the enzyme source, ornithine carbamyltransferase (EC 2.1.3.3) activity was high but synthesis of ureidohomoserine was barely detectable. Both ornithine carbamyltransferase and the ureidohomoserine synthesizing enzyme had similar Km values for carbamyl phosphate. The purification data suggest that one enzyme may catalyze both reactions in jack bean leaves.  相似文献   

10.
A cDNA clone complementary to mRNA encoding the precursor (Mr = 165,000) to the rat liver mitochondrial matrix enzyme carbamyl phosphate synthetase I (Mr = 160,000) was employed to compare relative amounts of the messenger in adult and fetal liver and in Morris hepatoma 5123D and 3924A cells. Northern blot analysis gave a size estimate for the messenger of 6,500-6,700 nucleotides. Carbamyl phosphate synthetase mRNA levels in 15-day-old fetal liver were less than 10% of adult levels; 5123D cells expressed the messenger at levels about 2-fold higher than normal adult liver, but the messenger was undetectable in 3924A cells. Albumin mRNA was also expressed in the former but not in the latter. Maintaining rats for 5 days on a diet containing 60% casein augmented the relative amount of carbamyl phosphate synthetase mRNA by about 2-fold, while a protein-free diet resulted in reduced levels of the mRNA (about 50% compared to animals on a normal diet). Finally, the pattern of hybridization of carbamyl phosphate synthetase cDNA to HindIII-digested genomic DNA showed no differences between normal liver and its corresponding hepatoma; however, a HindIII site polymorphism was observed between Buffalo and ACI rats.  相似文献   

11.
Thyroxine has been shown to accelerate the synthesis of carbamyl phosphate synthetase in the liver of Rana catesbeiana. Stimulation of carbamyl phosphate synthetase synthesis by thyroxine appears to be relatively specific because of the following observations: (1) succinoxidase activity decreased during the time that carbamyl phosphate synthetase increased; (2) liver catalase responded more slowly than carbamyl phosphate synthetase to thyroxine; (3) the ratio of biochemical changes/morphological changes was greatly altered during thyroxine-induced metamorphosis. The relationships between the concentration of thyroxine and (1) temperature; (2) duration of exposure of the tadpole to thyroxine; and (3) the activity of carbamyl phosphate synthetase during the induced synthesis of carbamyl phosphate synthetase by thyroxine are discussed. Chloramphenicol and thiouracil partly counteracted the effect of thyroxine on the synthesis of carbamyl phosphate synthetase.  相似文献   

12.
Arginosuccinate (ASA) synthetase and lyase activities were detected in extracts from Vitis vinifera L. cv. Chenin blanc mature leaves and seedlings. Optimum reaction conditions for ASA synthetase were 10 millimolar l-citrulline, 7.5 millimolar l-aspartate, 3 to 4 millimolar ATP, 12 millimolar Mg(2+) (pH 7.5 to 8.0), enzyme extract up to equivalent of about 200 milligrams of fresh tissue, and incubation temperature of 38 to 40 C. Optimum reaction conditions for ASA lyase were 4 millimolar ASA-K salt (pH 7.3 to 7.8), amount of extract up to equivalent of about 180 milligrams of fresh tissue, and incubation temperature of 38 to 40 C.  相似文献   

13.
A simple and efficient system for continuous ATP regeneration is described. The procedure is based on the enzyme-catalyzed reaction between carbamyl phosphate and ADP. The carbamyl phosphate was generated in situ by reaction between potassium cyanate and potassium phosphate. The enzyme, carbamyl phosphokinase, was isolated from extracts of Streptococcus faccalis and partially purified. Immobilization of the enzyme was achieved using glutaraldehyde-treated alkylamine glass giving 200–250 units of activity per gram of glass. A column of carbamyl phosphokinase on glass was used to form ATP continuously from ADP, phosphate, and cyanate and lost approximately 16% of the initial activity after 14 days operation at room temperature.  相似文献   

14.
We present evidence that cysteine 269 of the small subunit of Escherichia coli carbamyl phosphate synthetase is essential for the hydrolysis of glutamine. When cysteine 269 is replaced with glycine or with serine by site-directed mutagenesis of the carA gene, the resulting enzymes are unable to catalyze carbamyl phosphate synthesis with glutamine as nitrogen donor. Even though the glycine 269, and particularly the serine 269 enzyme bind significant amounts of glutamine, neither glycine 269 nor serine 269 can hydrolyze glutamine. The mutations at cysteine 269 do not affect carbamyl phosphate synthesis with NH3 as substrate. The NH3-dependent activity of the mutant enzymes was equal to that of wild-type. Measurements of Km indicate that the enzyme uses unionized NH3 rather than ammonium ion as substrate. The apparent Km for NH3 of the wild-type enzyme is calculated to be about 5 mM, independent of pH. The substitution of cysteine 269 with glycine or with serine results in a decrease of the apparent Km value for NH3 from 5 mM with the wild-type to 3.9 mM with the glycine, and 2.9 mM with the serine enzyme. Neither the glycine nor the serine mutation at position 269 affects the ability of the enzyme to catalyze ATP synthesis from ADP and carbamyl phosphate. Allosteric properties of the large subunit are also unaffected. However, substitution of cysteine 269 with glycine or with serine causes an 8- and 18-fold stimulation of HCO-3 -dependent ATPase activity, respectively. The increase in ATPase activity and the decrease in apparent Km for NH3 provide additional evidence for an interaction of the glutamine binding domain of the small subunit with one of the two known ATP sites of the large subunit.  相似文献   

15.
Brzozowski, Thomas H. (Stanford University School of Medicine, Palo Alto, Calif.), and Sumner M. Kalman. Carbamyl phosphate and acetyl phosphate synthesis in Escherichia coli: analysis of associated enzyme activities by an antibody to acetokinase. J. Bacteriol. 91:2286-2290. 1966.-Earlier studies have shown that the carbamyl phosphate synthesis from ammonia in cell extracts of wild-type Escherichia coli is due to at least two enzymes, acetokinase and the glutamine-dependent carbamyl phosphate synthetase. Partial purification of the glutamine-dependent carbamyl phosphate synthetase and acetokinase fails to separate from these enzymes this ammonia-dependent activity. An antibody to the partially purified acetokinase was prepared and used to determine the distribution of the ammonia-dependent activity in wild-type organisms and single-step arginine-uracil-requiring mutants with respect to the two enzymes. Such a study was possible because the antibody inhibits acetokinase but not the glutamine-utilizing carbamyl phosphate synthetase. Enzyme inhibition obtained by the stepwise addition of the antibody to cell extracts indicates that all of the ammonia-dependent carbamyl phosphate synthesis observed in the arginine-uracil-requiring mutants is due to a protein in the acetokinase fraction, presumably acetokinase itself, since acetyl phosphate and carbamyl phosphate synthesis were inhibited in a parallel fashion. In wild-type organisms, there is only partial inhibition of the ammonia-dependent activity, even when enough antibody is added to produce maximal inhibition of acetokinase. It is suggested that this residue is due to the glutamine-dependent carbamyl phosphate synthetase, for the ratio of the antibody insensitive to antibody sensitive ammonia-dependent activity present in cell extracts of the two wild-type organisms reported is qualitatively proportional to the level of carbamyl phosphate synthetase present relative to acetokinase.  相似文献   

16.
A permeabilization procedure was adapted to allow the in situ determination of aspartate transcarbamylase activity in Saccharomyces cerevisiae. Permeabilization is obtained by treating cell suspensions with small amounts of 10% toluene in absolute ethanol. After washing, the cells can be used directly in the enzyme assays. Kinetic studies of aspartate transcarbamylase (EC 2.1.3.2) in such permeabilized cells showed that apparent Km for substrates and Ki for the feedback inhibitor UTP were only slightly different from those reported using partially purified enzyme. The aspartate saturation curve is hyperbolic both in the presence and absence of UTP. The inhibition by this nucleotide is noncompetitive with respect to aspartate, decreasing both the affinity for this substrate and the maximal velocity of the reaction. The saturation curves for both substrates give parallel double reciprocal plots. The inhibition by the products is linear noncompetitive. Succinate, an aspartate analog, provokes competitive and uncompetitive inhibitions toward aspartate and carbamyl phosphate, respectively. The inhibition by phosphonacetate, a carbamyl phosphate analog, is uncompetitive and noncompetitive toward carbamyl phosphate and aspartate, respectively, but pyrophosphate inhibition is competitive toward carbamyl phosphate and noncompetitive toward aspartate. These results, as well as the effect of the transition state analog N-phosphonacetyl-L-aspartate, all exclude a random mechanism for aspartate transcarbamylase. Most of the data suggest an ordered mechanism except the substrates saturation curves, which are indicative of a ping-pong mechanism. Such a discrepancy might be related to some channeling of carbamyl phosphate between carbamyl phosphate synthetase and aspartate transcarbamylase catalytic sites.  相似文献   

17.
During growth on minimal medium, cells of Neurospora contain three pools of ornithine. Over 95% of the ornithine is in a metabolically inactive pool in vesicles, about 1% is in the cytosol, and about 3% is in the mitochondria. By using a ureaseless strain, we measured the rapid flux of ornithine across the membrane boundaries of these pools. High levels of ornithine and the catabolic enzyme ornithine aminotransferase coexist during growth on minimal medium but, due to the compartmentation of the ornithine, only 11% was catabolized. Most of the ornithine was used for the synthesis of arginine. Upon the addition of arginine to the medium, ornithine was produced catabolically via the enzyme arginasn early enzyme of ornithine synthesis. The biosynthesis of arginine itself, from ornithine and carbamyl phosphate, was halted after about three generations of growth on arginine via the repression of carbamyl phosphate synthetase A. The catabolism of arginine produced ornithine at a greater rate than it had been produced biosynthetically, but this ornithine was not stored; rather it was catabolized in turn to yield intermediates of the proline pathway. Thus, compartmentation, feedback inhibition, and genetic repression all play a role to minimize the simultaneous operation of anabolic and catabolic pathways for ornithine and arginine.  相似文献   

18.
Carbamyl phosphate caused a maximal inhibition of 50% of the in vitro nitrogenase activity measured by acetylene reduction and dinitrogen reduction. The addition of 1 mM carbamyl phosphate to a N(2)-fixing culture caused a rapid decrease of 30% of the acetylene reduction activity and also repression of nitrogenase biosynthesis. However, carbamyl phosphate had no effect on the reductant-dependent adenosine triphosphate hydrolysis and H(2) evolution reactions catalyzed by nitrogenase. Studies on the binding of carbamyl phosphate to nitrogenase and each of its two components (azoferredoxin and molybdoferredoxin) indicated that optimal binding was obtained only in the presence of an operating nitrogenase system. Moreover, the binding seemed to be on the molybdoferredoxin component rather than azoferredoxin. From a Scatchard plot and a reciprocal plot of the data, the values of n = 2 and dissociation constant (K) of approximately 5 x 10(-5) M were obtained. The value for the dissociation constant was of the same order of magnitude as the endogenous level of carbamyl phosphate in a N(2)-fixing cell. The carbamyl phosphate pool in NH(3)-grown cells was twice that of N(2)-fixing cells.  相似文献   

19.
A 3-phosphoglycerate phosphatase activity of about 2 micromoles per minute per milligram chlorophyll is associated with the thylakoid membranes of spinach chloroplasts. The Km for 3-phosphoglycerate is 3 millimolar. The enzyme can be solubilized from thylakoid membranes by treatment with 0.33 molar MgCl2 or sodium deoxycholate. The activity is not stimulated by sulfhydryl reagents or the addition of 10 millimolar MgCl2. The enzymic activity is insensitive to ethylenediaminetetraacetate. The pH optimum is broad, between 5.5 to 7.5. Although the substrate specificity is broad, 3-phosphoglycerate is the best substrate of those tested at neutral pH. However, p-nitrophenyl phosphate was a more effective substrate at pH 5.5. The enzyme exhibits the general characteristics of an acid phosphatase.  相似文献   

20.
During the course of purification of UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine synthetase, we observed a marked stimulation of the enzymatic activity in the presence of phosphate ions. This activation effect was studied with enzyme purified 979-fold from Bacillus sphaericus. Each salt tested stimulated the activity of the synthetase. The order of activation by different anions was HPO4(2-) greater than Cl- greater than SO4(2-). In every case, the potassium salt gave higher activity than the corresponding sodium salt. The activation in the presence of phosphate was quite pronounced (almost sevenfold with K2HPO4) and occurred at a relatively low concentration. The Ka for K2HPO4 was found to be 3.4 mM and the Hill coefficient was calculated to be 1.0. This would suggest that there is one phosphate-binding site per active centre. The presence of phosphate did not affect either the pH optimum of this enzyme or the optimum concentration of Mg2+ required. The presence of phosphate has little or no effect on the Km of any of the substrates. Thus, it appears that the presence of phosphate changes the enzyme conformation to a catalytically more active form. The activation of this enzyme in the presence of phosphate anion is all the more interesting because phosphate is a product of the reaction catalyzed by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号