首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the teleost fish Fundulus heteroclitus, there are three NADP-dependent isocitrate dehydrogenase isozymes. IDH-B2 is the only cytoplasmic isozyme, and IDH-C2 dominates the mitochondria of all tissues other than liver, where IDH-A2 is expressed. Since fish are ectotherms, their intracellular temperature and pH change directly with environmental temperature. In order to evaluate the influence of these environmental parameters on a model fish NADP-isocitrate dehydrogenase system, the major cytoplasmic (IDH-B2) and mitochondrial (IDH-C2) isozymes were kinetically evaluated as a function of pH and temperature. Whereas Vfmax and KmISOCm (where ISOC is isocitrate) were pH-independent, the Km for NADP was pH-dependent for both isozymes. The cytoplasmic isozyme (IDH-B2) had smaller KmNADP values between pH 7.0 and pH 8.0 than the mitochondrial form (IDH-C2). Vfmax and Km for substrate and coenzyme were temperature-dependent. Energy of activation for IDH-B2 and IDH-C2 was 10.6 and 12.8 kcal/mol, respectively. Both proteins had delta G not equal to values of about 15.8 kcal/mol, with significantly different distributions between delta H not equal to and delta S not equal to. The cytoplasmic isozyme (IDH-B2) appears to have a greater rate of catalysis than the mitochondrial enzyme (IDH-C2) at temperatures less than 30 degrees C. Moreover, the IDH-B2 isozyme had lower KmNADP values than the IDH-C2 isozyme at all temperatures, whereas the KmISOC values for the two isozymes were indistinguishable. Our data suggest that the two major NADP-dependent isocitrate dehydrogenase isozymes have unique physiological and metabolic functions that are adapted to the tissues and cellular compartments in which they are expressed.  相似文献   

2.
Arginine biosynthesis in eukaryotes is divided between the mitochondria and the cytosol. The anaerobic chytridiomycete Neocallimastix frontalis contains highly reduced, anaerobic modifications of mitochondria, the hydrogenosomes. Hydrogenosomes also occur in the microaerophilic flagellate Trichomonas vaginalis, which does not produce arginine but uses one of the mitochondrial enzymes, ornithine transcarbamoylase, in a cytosolic arginine dihydrolase pathway for ATP generation. EST sequencing and analysis of the hydrogenosomal proteome of N. frontalis provided evidence for two mitochondrial enzymes of arginine biosynthesis, carbamoylphosphate synthase and ornithine transcarbamoylase, while activities of the arginine dehydrolase pathway enzymes were not detectable in this fungus.  相似文献   

3.
Phaseolotoxin, a tripeptide inhibitor of ornithine transcarbamoylase, is a phytotoxin produced by Pseudomonas syringae pv. phaseolicola, the causal agent of halo-blight in beans. In vivo the toxin is cleaved to release N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine, the major toxic chemical species present in diseased leaf tissue. This paper reports on the interaction between N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine and ornithine transcarbamoylase. N delta-(N'-Sulpho-diaminophosphinyl)-L-ornithine was found to be a potent inactivator of the enzyme, in contrast with phaseolotoxin, which previously has been reported to inhibit the enzyme reversibly. Inactivation by N delta-(N'-[35S]sulpho-diaminophosphinyl)-L-ornithine resulted in the incorporation of 35S into ethanol-precipitated protein. The stoicheiometry of 35S incorporation was approximately 1 mol/mol of active sites. Inactivation was second-order and a rate constant of 10(6) M-1 X s-1 at 0 degree C in 50 mM-Tris/HCl, pH 9.0, was obtained. Carbamoyl phosphate, a substrate of ornithine transcarbamoylase, protected the enzyme from inactivation. A dissociation constant of 3 microM for the enzyme-carbamoyl phosphate complex was calculated. L-Ornithine, the second substrate for ornithine transcarbamoylase, protected the enzyme only at high concentrations. The results are consistent with N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine being a potent affinity label that binds via the carbamoyl phosphate-binding site of ornithine transcarbamoylase. Cleavage of phaseolotoxin to N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine in vivo appears to be an important function in the physiology of the disease.  相似文献   

4.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

5.
Ornithine transcarbamoylase (carbamoyl phosphate:l-ornithine carbamoyltransferase, EC 2.1.3.3) has been partially purified from the blue-green alga Nostoc muscorum Kützing, an organism in which the enzyme seems to be involved in a bicarbonate-fixing pathway leading to citrulline. Pertinent to possible regulation of this pathway, the enzyme shows hyperbolic substrate kinetics, has a molecular weight estimated at 75,000 daltons, and its catalytic capability is little influenced by a selection of metabolites that might conceivably act as regulators in vivo. Thus it seems unlikely that this enzyme is the control point for bicarbonate fixation. In terms of energy of activation (12.3 kcal/mole), size and Km for carbamoylphosphate, the Nostoc enzyme resembled preparations from liver and higher plants more than preparations from Streptococcus and Mycoplasma. The enzymes from Streptococcus and Mycoplasma are probably specialized for citrulline breakdown rather than citrulline synthesis. The Km for ornithine was 2.5 mm at a saturating concentration of carbamoylphosphate and the Km for carbamoylphosphate was 0.7 mm at an ornithine concentration of 2 mm. Ornithine was inhibitory at concentrations greater than 2 mm. Phosphate was a competitive inhibitor with respect to carbamoylphosphate. The pH optimum for citrulline synthesis was 9.5.  相似文献   

6.
Ornithine and lysine are taken up by rat liver mitochondria with an apparent Km of 1.3 and 2.4 mM, respectively. Neither lysine methylester alpha-N-acetyl lysine, nor epsilon-N-acetyl lysine inhibits the uptake of either ornithine or lysine. The zwitterionic form of these amino acids is taken up by liver mitochondria. Lysine inhibits the uptake of ornithine and vice versa. The inhibition is in both cases of the mixed type. Arginine strongly inhibits the uptake of both ornithine and lysine. Alkalinization of the mitochondrial matrix decreases the rate of uptake of ornithine and of lysine, while acidification of the mitochondrial matrix increases these rates. It is concluded that ornithine and lysine are taken up via a common carrier in exchange for H+.  相似文献   

7.
The arginine-specific carbamoyl-phosphate synthase of yeast was stabilized sufficiently to allow partial purification of the enzyme (30- to 40-fold). The synthase (mol. wt 115000) comprised two unequal subunits: a heavy subunit (mol. wt 80000) capable of catalysing synthesis of carbamoyl phosphate with ammonia as a nitrogen donor and a light subunit conferring upon the holoenzyme the ability to utilize glutamine. The enzyme had unusually high affinity for ATP (Km = 0.2 mM) and atypical negative cooperativity for glutamine binding ([S]0.5 = 0.25 mM). Glutamine activity was not modulated by possible effectors such as arginine, ornithine or N-acetylglutamate. Thus, although the yeast arginine enzyme physically and functionally resembles the single enteric synthase, the systems differ substantially both in kinetic properties and in regulation of activity.  相似文献   

8.
1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.  相似文献   

9.
The effect of alloxan diabetes on citrulline formation from NH4Cl and bicarbonate was studied in rabbit liver mitochondria incubated with glutamate or succinate as respiratory substrate, as well as with exogenous ATP in the presence of uncoupler and oligomycin. In contrast to ornithine transcarbamoylase, the activity of carbamoyl-phosphate synthetase (ammonia) was higher in mitochondria from diabetic animals than in those from normal ones. In diabetic rabbits the rates of citrulline synthesis were stimulated under all conditions studied. In contrast, levels of N-acetyglutamate, an activator of carbamoyl-phosphate synthetase (ammonia), were significantly increased only in the presence of glutamate, while the highest rates of citrulline formation occurred in uncoupled mitochondria incubated with exogenous ATP as energy source. Treatment of animals with alloxan resulted in an increase of both the intramitochondiral ATP level and the rate of adenine nucleotide translocation across the mitochondrial membrane. The results indicate that the stimulation of citrulline formation in liver mitochondria of diabetic rabbits is mainly due to an increase in carbamoyl-phosphate synthetase (ammonia) activity and an elevation of content of intramitochondrial ATP, a substrate of this enzyme.  相似文献   

10.
The rate of citrulline synthesis in mitochondria from OTC-deficient spf-ash mice (15% of the normal activity) was found to be the same as that in mitochondria from control mice. The amount of NAG in their mitochondria varied markedly according to whether they had received a high- or low-protein diet, and the rate of citrulline synthesis was found to be affected by the level of NAG. These results indicate that the CPS stage, not the OTC stage, is rate-limiting in the citrulline synthesis process. Kinetic studies on the effect of ornithine concentration on citrulline synthesis in mitochondria showed that the Km for ornithine was very low in the mitochondria from the mice given a low-protein diet. Kinetic studies on the effect of ornithine concentration on mouse OTC at various concentrations of carbamylphosphate showed that OTC has a ping-pong mechanism, i.e., that the Km for ornithine and Vmax decrease with the reduction in carbamylphosphate concentration. This may explain the low Km value observed in citrulline synthesis in the mitochondria. We conclude that in mitochondrial citrulline synthesis the rate of carbamylphosphate synthesis by CPS in the presence of NAG plays a key role in determining the rate of citrulline synthesis and ornithine dependency.  相似文献   

11.
The purpose of this study was to characterize the mutant enzyme in nine patients with gyrate atrophy of the choroid and retina associated with ornithine aminotransferase (OAT) deficiency, to elucidate the mechanism of response to pyridoxine in four pyridoxine-responsive patients, and to determine the extent of genetic heterogeneity in both groups of patients. We have measured the apparent Km for pyridoxal phosphate (PLP) in fibroblast mitochondria and the heat stability of OAT at 45 degrees C in the presence and absence of PLP, using a sensitive radiochemical assay. The apparent Km for PLP was higher in pyridoxine-responsive patients than in nonresponsive patients whose apparent Km for PLP was normal. In contrast, the apparent Km for ornithine was normal in the seven patients studied. Surprisingly, the responsive patient with mildest clinical disease had the highest Km for PLP. However, she had the most stable enzyme, which presumably contributed to her milder phenotype. Western blot analyses of mitochondrial proteins, using antibody to human OAT, indicated clearly detectable OAT protein in pyridoxine-responsive patients and in two of five nonresponders, but low or undetectable levels in the other three patients. These data clarify the mechanism of pyridoxine response and indicate heterogeneity within as well as between the pyridoxine-responsive and the nonresponsive patients with gyrate atrophy.  相似文献   

12.
We have purified from beef liver an enzyme which decarbamoylates carbamoyl-hemoglobin and to a much lesser extent carbamoyl histones. Carbamoyl casein was a poor substrate while carbamoyl trypsin, fibrinogen and ovoalbumin were not affected. The optimal pH is 7.4. Addition of Mg++, Mn++ or Ca++ was without effect. On testing citrulline as a substrate we found high activity leading us to suspect that the activity of the decarbamoylase preparation was due to contaminating ornithine transcarbamoylase activity. Evidence for this is the similar ratio of transcarbamoylase to decarbamoylase activities of both ornithine transcarbamoylase and of the purified preparation of decarbamoylase from beef liver. Also, delta-PALO, the specific inhibitor of ornithine transcarbamoylase inhibited both preparations to the same extent. Interestingly, ornithine transcarbamoylase from bacteria also has decarbamoylase activity while aspartic transcarbamoylase does not.  相似文献   

13.
1. A procedure is described for purifying the enzyme L-alanine:4,5-dioxovaleric acid aminotransferase (DOVA transaminase) from chicken liver. The enzyme catalyzes a transamination reaction between L-alanine and 4,5-dioxovaleric acid (DOVA), yielding delta-aminolevulinic acid (ALA). 2. In cell fractionation studies, DOVA transaminase activities were detected in mitochondria and in the post-mitochondrial supernatant fraction from liver homogenates. 3. For the mitochondrial enzyme, any of most L-amino acids could serve as a source for the amino group transferred to DOVA, but L-alanine appeared the preferred substrate. At pH 7.0, the enzyme had an apparent Km of 60 microM for DOVA and of 400 microM for L-alanine. 4. The enzyme was purified from disrupted mitoplasts in three steps: chromatography on DEAE-Sephacel, gel filtration through Sephadex G-150, and chromatography on hydroxyapatite. The yield was approx. 100 micrograms of enzyme protein per 10 g wet wt of liver. 5. The purified enzyme had a subunit mol. wt of 63,000 as determined by gel electrophoresis under denaturing conditions. 6. The activity of DOVA transaminase was also measured in embryonic chicken liver, and based on activity, the enzyme's capacity to produce ALA was significantly greater than that of ALA synthase. Unlike ALA synthase, however, DOVA transaminase activity did not increase in liver mitochondria of chicken embryos exposed for 18 hr to two potent porphyrogenic agents.  相似文献   

14.
Malonyl-CoA decarboxylase in the mitochondria of the liver of goose is immunologically identical with the decarboxylase in the cytoplasm of the uropygial gland (Buckner et al. (1978) Arch. Biochem. Biophys. 186, 152–163). Messenger RNA was isolated from the liver and the uropygial gland and translated in a rabbit reticulocyte system. Specific immunoprecipitation of the translation products with anti malonyl-CoA decarboxylase showed that in both cases the primary translation product was a 50 K dalton peptide identical in size to the cytoplasmic enzyme in the gland. Specific immunoprecipitation of malonyl-CoA decarboxylase from liver slices which had been incubated with [35S]methionine showed that the mature mitochondrial enzyme was a 47 K dalton peptide, 3 K daltons smaller than the primary translation product and the isolated cytoplasmic enzyme. These results suggest that the decarboxylase is proteolytically processed during transport into the mitochondria and that the large amount of the cytoplasmic decarboxylase found in the gland represents accumulation of the unprocessed precursor form of the normally mitochondrial enzyme.  相似文献   

15.
We have purified the metalloprotease which is localized in the soluble matrix space of Saccharomyces cerevisiae mitochondria and cleaves the amino-terminal matrix-targeting sequences from imported mitochondrial precursor proteins. The enzyme consists of two loosely associated non-identical subunits of mol. wt 48,000 and 51,000, respectively. Attempts to separate the two subunits from each other caused loss of activity. The smaller subunit had been identified as the product of the nuclear MAS1 gene (Witte et al., 1988). The larger subunit is now identified as the product of the nuclear MAS2 gene.  相似文献   

16.
The uptake of the cytoplasmically synthesized mammalian enzyme, ornithine transcarbamylase, into mitochondria is directed by an N-terminal peptide of 32 amino acids. We have investigated some of the structural requirements for the import of the enzyme from rat liver into isolated mitochondria and into mitochondria of COS cells transfected with cDNA encoding the precursor form of ornithine transcarbamylase. Deletion of 21 amino acids from the N terminus of the leader peptide blocked the import of the precursor; deletion of 5 amino acids at positions 15-19 from the N terminus of the leader peptide had no deleterious effect on the import of the enzyme, nor on the processing and assembly of subunits in mitochondria. The region deleted contained three of eight basic residues in the leader peptide suggesting that specific structural elements containing basic residues, rather than the general basic nature of the leader, may be involved in mitochondrial import.  相似文献   

17.
Yeast mitochondrial tRNA synthetase has been partially purified and chromatographic, catalytic and antigenic properties have been compared to the cytoplasmic homologous enzyme from yeast. No significant differences could be observed between the two enzymes with respect to their behaviour during ammonium sulfate precipitation or in chromatographic separation on DEAE cellulose, hydroxylapatite and Sephadex G 200. The Km of the two enzymes toward tRNAs from yeast mitochondria, yeast cytoplasm or E. coli are pratically identical. The antigenic properties of the two enzymes are very similar; antisera against either the mitochondria or the cytoplasmic enzyme lead to the inhibition of their catalytic properties. The mitochondrial ValRS is formed by a single polypeptide chain whose molecular weight is 125,000 daltons, a value very close to that of the yeast cytoplasmic enzyme.  相似文献   

18.
In Saccharomyces cerevisiae, ornithine transcarbamoylase and arginase form a regulatory multienzyme complex (Hensley, P. (1988) Curr. Top. Cell. Regul. 29, 35-75). In this complex, arginase acts as a negative allosteric effector for ornithine transcarbamoylase. Before an analysis of the factors which promote and stabilize complex formation, arginase was purified in milligram quantities from a plasmid-containing, enzyme-overproducing, protease-deficient yeast strain and its physical characterization undertaken. The purified enzyme has a specific activity of 885 mumol urea min-1 mg-1 and a Km for arginine of 15.7 mM. The ultraviolet spectrum has a maximum absorbance at 279 nm, and the steady-state fluorescence emission spectrum has a maximum intensity at 337 nm, suggesting that the 3 tryptophans/polypeptide chain are in a relatively hydrophobic environment. Arginase has a weakly bound manganese responsible for the maintenance of the catalytic activity and is known to be heat activated in the presence of manganese. This effect is half-maximal at 12.1 microM manganese. In addition to a catalytic requirement for manganese, the presence of a more tightly bound metal is suggested from sedimentation studies. The native trimeric enzyme has a sedimentation coefficient of 5.95 S. Removal of the weakly associated metal results in no change in the sedimentation coefficient. However, dialysis with EDTA causes the s-value to decrease to 4.65 S, suggesting that under these conditions, the trimeric enzyme may partially dissociate. An analysis of CD spectra shows that significant spectral changes result from the removal of both the weakly bound metal and dialysis against EDTA.  相似文献   

19.
The intramitochondrial localization of the urea cycle enzymes, carbamoyl phosphate synthetase and ornithine transcarbamoylase, has been examined by both in vitro and in situ studies. The following three lines of evidence are presented to establish that significant fractions of the rat liver enzymes are loosely associated with the inner mitochondrial membrane: 1) when the mitochondrion is fractionated, the enzymes partition between the matrix and membrane fractions in the absence of detergent and partition solely to the matrix in the presence of detergent; 2) the purified enzymes associate with purified inner membrane preparations; and, 3) protein A-gold electron microscopic immunocytochemical analysis of rat liver sections reveals a nonrandom arrangement of the enzyme, with the maximal enzyme density adjacent to the inner mitochondrial membrane. These findings serve as the basis for novel potential mechanisms for regulation of the activity of the enzymes and provide additional evidence for the extensive organization of the mitochondrial matrix. The membrane interaction might also serve as the organizing factor for a carbamoyl phosphate synthetase-ornithine transcarbamoylase or other multienzyme complex.  相似文献   

20.
Tissue-specific isozymes of glutamine synthetase are present in elasmobranchs. A larger isozyme occurs in tissues in which the enzyme is localized in mitochondria (liver, kidney) whereas a smaller form occurs in tissues in which it is cytosolic (brain, spleen, etc.). The nucleotide sequence of spiny dogfish shark (Squalus acanthias) liver glutamine synthetase mRNA, derived from its cDNA, shows there are two in-frame initiation codons (AUG) at the N-terminus which will account for the size differences between the two isozymes. Initiation at the up-stream and down-stream sites would yield peptides of 45,406 and 41,869 mol. wts. representing the precursor of the mitochondrial isozyme and the cytosolic isozyme, respectively. The additional N-terminal 29 amino acids present in the mitochondrial isozyme precursor contains two putative cleavage sites based on the Arg-X-(Phe,Ile,Leu) motif. The predicted two-step processing would remove 14 of the 29 N-terminal amino acids. These 14 amino acids can be predicted to form a very strong amphipathic mitochondrial targeting signal. Their removal would yield a mature peptide of 43,680 mol. wt. The calculated mol. wts. based on the derived amino acid sequence are therefore in good agreement with previous estimates of an approximately 1.5–2-kDa difference between the Mrs of the mitochondrial and cytosolic isozymes. A model for the evolution of the mitochondrial targeting of glutamine synthetase in vertebrates is proposed. Correspondence to: J.W. CampbellThe nucleotide sequence reported will appear in GenBank under accession number U04617  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号