首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic oxidation of phenylalanine and phenylacetate proceeds via α-oxidation of phenylacetyl-CoA to phenylglyoxylate. This four-electron oxidation system was studied in the denitrifying bacterium Thauera aromatica. It is membrane-bound and was solubilized with Triton X-100. The system used dichlorophenolindophenol as an artificial electron acceptor; a spectrophotometric assay was developed. No other products besides phenylglyoxylate and coenzyme A were observed. The enzyme was quite oxygen-insensitive and was inactivated by low concentrations of cyanide. Enzyme activity was induced under denitrifying conditions with phenylalanine and phenylacetate, it was low in cells grown with phenylglyoxylate, and it was virtually absent in cells grown with benzoate and nitrate or after aerobic growth with phenylacetate. Received: 15 January 1998 / Accepted: 3 March 1998  相似文献   

2.
1. Nocardia salmonicolor grew on a variety of alkanes, 1-phenylalkanes and 1-cyclo-hexylalkanes as sole carbon and energy sources. 2. Growth on 1-phenyldodecane in batch culture was diauxic. Isocitrate lyase activity was induced during lag phase, reaching a maximum activity in the first growth phase, during which both the aromatic ring and the side chain were degraded. However, 4-phenylbutyrate, 4-phenylbut-3-enoate, 4-phenylbut-2-enoate, 3-phenylpropionate, cinnamate and phenylacetate accumulated in the growth medium. These compounds disappeared at the onset of diauxic lag and four hydroxylated compounds accumulated; one was 4-(o-hydroxyphenyl)but-3-enoate and another was identified as 4-(o-hydroxyphenyl)butyrate. These compounds were utilized during the second growth phase. 3. Washed 1-phenyldodecane-grown cells oxidized acetate, cinnamate, 3,4-dihydroxyphenylacetate, homogentisate, o-, m- and p-hydroxyphenylacetate, phenylacetate, and 4-phenylbutyrate rapidly without lag. 4. Extracts of such cells rapidly oxidized homogentisate,3,4-dihydroxyphenylacetate, catechol and protocatechuate. 5. The organism grew readily on 4-phenylbutyrate, phenylacetate, o-hydroxyphenylacetate, homogentisate and 3,4-dihydroxyphenylacetate as sole carbon energy sources, but growth was slow on cinnamate and 4-phenylbut-3-enoate. 6. When cinnamate and phenylacetate were sole carbon sources for growth, phenylacetate and o-hydroxyphenylacetate respectively were detected in culture supernatants. 4-Phenylbut-3-enoate and 4-phenylbutyrate both yielded a mixture of cinnamate and phenylacetate. 7. It is proposed that 1-phenyldodecane is catabolized by ω-oxidation of the terminal methyl group, side-chain β-oxidation to 4-phenylbutyrate, both β- and α-oxidation to phenylacetic acid, hydroxylation to homogentisate via o-hydroxyphenylacetate and ring cleavage to maleylacetoacetate. Catabolism via 3,4-dihydroxyphenylacetate may also occur. 8. Growth on 1-phenylnonane was also diauxic and cinnamic acid, phenylpropionic acid, benzoic acid and hydroxyphenylpentanoic acid accumulated in the medium. Respirometric data and ring-cleavage enzyme activities showed similar patterns to those obtained after growth on 1-phenyldodecane. The results suggest that the main catabolic routes for 1-phenyldodecane and 1-phenylnonane may converge at cinnamate. 9. Possible reasons for diauxie are discussed.  相似文献   

3.
Cultures of Chromatium strain D and Rhodospirillum rubrum incorporated 14C from phenylacetate-1-14C during anaerobic growth. The radioactivity in the protein fraction of cells was mainly in phenylalanine. Phenylalanine from Chromatium cells grown in phenylacetate-1-14C was labeled at carbon 2. Incorporation of phenylacetate by Chromatium was decreased in the presence of exogenous phenylalanine, and de novo synthesis of phenylalanine from bicarbonate was less in medium containing either phenylalanine or phenylacetate. These organisms, and also certain anaerobic rumen bacteria, apparently carboxylate phenylacetate to synthesize the phenylalanine carbon skeleton. The mechanism of the carboxylation is unknown; however, it appears to be dependent upon anaerobic conditions, since R. rubrum did not synthesize phenylalanine from phenylacetate during aerobic growth in the dark.  相似文献   

4.
The anaerobic biodegradation of ferulate and benzoate in stabilized methanogenic consortia was examined in detail. Up to 99% of the ferulate and 98% of the benzoate were converted to carbon dioxide and methane. Methanogenesis was inhibited with 2-bromoethanesulfonic acid, which reduced the gas production and enhanced the buildup of intermediates. Use of high-performance liquid chromatography and two gas chromatographic procedures yielded identification of the following compounds: caffeate, p-hydroxycinnamate, cinnamate, phenylpropionate, phenylacetate, benzoate, and toluene during ferulate degradation; and benzene, cyclohexane, methylcyclohexane, cyclohexanecarboxylate, cyclohexanone, 1-methylcyclohexanone, pimelate, adipate, succinate, lactate, heptanoate, caproate, isocaproate, valerate, butyrate, isobutyrate, propionate, and acetate during the degradation of either benzoate or ferulate. Based on the identification of the above compounds, more complete reductive pathways for ferulate and benzoate are proposed.  相似文献   

5.
T R Fulton  T Triano  A Rabe  Y H Loo 《Life sciences》1980,27(14):1271-1281
Phenylacetate, a metabolite derived from phenylalanine, is clearly associated with brain dysfunction in simulated phenylketonuria. Injections of phenylacetate, phenylethylamine, or p-chlorophenylalanine + L-phenylalanine, all yielding similar concentrations of phenylacetate in the rat brain during post-natal development, induced similar behavioral deficits: hypoactivity in an open field and poor performance in both a water maze and shuttle box. In contrast, animals treated with the other major metabolites of phenylalanine, phenylpyruvate, phenyllactate and mandelate, during the same developmental period displayed normal behavior.  相似文献   

6.
Phenylacetate-CoA ligase (E.C. 6.2.1.30), the initial enzyme in the metabolism of phenylacetate, was studied in Thermus thermophilus strain HB27. Enzymatic activity was upregulated during growth on phenylacetate or phenylalanine. The phenylacetate-CoA ligase gene (paaK) was cloned and heterologously expressed in Escherichia coli and the recombinant protein was purified. The enzyme catalyzed phenylacetate + CoA + MgATP --> phenylacetyl-CoA + AMP + MgPP(i) with a V(max) of 24 micromol/min/mg protein at a temperature optimum of 75 degrees C. The apparent K(m) values for ATP, CoA, and phenylacetate were 6, 30, and 50 microM: , respectively. The protein was highly specific toward phenylacetate and showed only low activity with 4-hydroxyphenylacetate. Despite an amino acid sequence identity of >50% with its mesophilic homologues, phenylacetate-CoA ligase was heat stable. The genome contained further homologues of genes, which are postulated to be involved in the CoA ester-dependent metabolic pathway of phenylacetate (hybrid pathway). Enzymes of this thermophile are expected to be robust and might be useful for further studies of this yet unresolved pathway.  相似文献   

7.
Degradation of 3-phenylbutyric acid by Pseudomonas sp.   总被引:1,自引:0,他引:1       下载免费PDF全文
Pseudomonas sp. isolated by selective culture with 3-phenylbutyrate (3-PB) as the sole carbon source metabolized the compound through two different pathways by initial oxidation of the benzene ring and by initial oxidation of the side chain. During early exponential growth, a catechol substance identified as 3-(2,3-dihydroxyphenyl)butyrate (2,3-DHPB) and its meta-cleavage product 2-hydroxy-7-methyl-6-oxononadioic-2,4-dienoic acid were produced. These products disappeared during late exponential growth, and considerable amounts of 2,3-DHPB reacted to form brownish polymeric substances. The catechol intermediate 2,3-DHPB could not be isolated, but cell-free extracts were able only to oxidize 3-(2,3-dihydroxyphenyl)propionate of all dihydroxy aromatic acids tested. Moreover, a reaction product caused by dehydration of 2,3-DHPB on silica gel was isolated and identified by spectral analysis as (--)-8-hydroxy-4-methyl-3,4-dihydrocoumarin. 3-Phenylpropionate and a hydroxycinnamate were found in supernatants of cultures grown on 3-PB; phenylacetate and benzoate were found in supernatants of cultures grown on 3-phenylpropionate; and phenylacetate was found in cultures grown on cinnamate. Cells grown on 3-PB rapidly oxidized 3-phenylpropionate, cinnamate, catechol, and 3-(2,3-dihydroxyphenyl)propionate, whereas 2-phenylpropionate, 2,3-dihydroxycinnamate, benzoate, phenylacetate, and salicylate were oxidized at much slower rates. Phenylsuccinate was not utilized for growth nor was it oxidized by washed cell suspensions grown on 3-PB. However, dual axenic cultures of Pseudomonas acidovorans and Klebsiella pneumoniae, which could not grow on phenylsuccinate alone, could grow syntrophically and produced the same metabolites found during catabolism of 3-PB by Pseudomonas sp. Washed cell suspensions of dual axenic cultures also immediately oxidized phenylsuccinate, 3-phenylpropionate, cinnamate, phenylacetate, and benzoate.  相似文献   

8.
9.
Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD+ and NADP+ as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.  相似文献   

10.
The anaerobic metabolism of phenylalanine was studied in the denitrifying bacterium Thauera aromatica, a member of the β-subclass of the Proteobacteria. Phenylalanine was completely oxidized and served as the sole source of cell carbon. Evidence is presented that degradation proceeds via benzoyl-CoA as the central aromatic intermediate; the aromatic ring-reducing enzyme benzoyl-CoA reductase was present in cells grown on phenylalanine. Intermediates in phenylalanine oxidation to benzoyl-CoA were phenylpyruvate, phenylacetaldehyde, phenylacetate, phenylacetyl-CoA, and phenylglyoxylate. The required enzymes were detected in extracts of cells grown with phenylalanine and nitrate. Oxidation of phenylalanine to benzoyl-CoA was catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, phenylacetaldehyde dehydrogenase (NAD+), phenylacetate-CoA ligase (AMP-forming), enzyme(s) oxidizing phenylacetyl-CoA to phenylglyoxylate with nitrate, and phenylglyoxylate:acceptor oxidoreductase. The capacity for phenylalanine oxidation to phenylacetate was induced during growth with phenylalanine. Evidence is provided that α-oxidation of phenylacetyl-CoA is catalyzed by a membrane-bound enzyme. This is the first report on the complete anaerobic degradation of an aromatic amino acid and the regulation of this process. Received: 6 March 1997 / Accepted: 16 May 1997  相似文献   

11.
The effects of light on growth, pigmentation and the activities of enzymes involved in the deamination of phenylalanine and tyrosine and in the biosynthesis of hispidin were examined in Polyporus hispidus. Evidence is presented for the stimulation of phenylalanine ammonia-lyase activity by light. Tyrosine ammonia-lyase activity and aminotransferase activities for phenylalanine and tyrosine were higher in the dark. Tracer studies showed that conversion of cinnamate into p-coumarate is enhanced by light. p-Coumaric acid hydroxylase, catalysing the conversion of p-coumarate into caffeate, could be detected only in cultures exposed to light. These results suggest that the cinnamate pathway for the metabolism of phenylalanine, leading to hispidin synthesis, is regulated by light in P. hispidus.  相似文献   

12.
Aerobic metabolism of phenylalanine in most bacteria proceeds via oxidation to phenylacetate. Surprisingly, the further metabolism of phenylacetate has not been elucidated, even in well studied bacteria such as Escherichia coli. The only committed step is the conversion of phenylacetate into phenylacetyl-CoA. The paa operon of E. coli encodes 14 polypeptides involved in the catabolism of phenylacetate. We have found that E. coli K12 mutants with a deletion of the paaF, paaG, paaH, paaJ or paaZ gene are unable to grow with phenylacetate as carbon source. Incubation of a paaG mutant with [U-13C8]phenylacetate yielded ring-1,2-dihydroxy-1,2-dihydrophenylacetyl lactone as shown by NMR spectroscopy. Incubation of the paaF and paaH mutants with phenylacetate yielded delta3-dehydroadipate and 3-hydroxyadipate, respectively. The origin of the carbon atoms of these C6 compounds from the aromatic ring was shown using [ring-13C6]phenylacetate. The paaG and paaZ mutants also converted phenylacetate into ortho-hydroxyphenylacetate, which was previously identified as a dead end product of phenylacetate catabolism. These data, in conjunction with protein sequence data, suggest a novel catabolic pathway via CoA thioesters. According to this, phenylacetyl-CoA is attacked by a ring-oxygenase/reductase (PaaABCDE proteins), generating a hydroxylated and reduced derivative of phenylacetyl-CoA, which is not re-oxidized to a dihydroxylated aromatic intermediate, as in other known aromatic pathways. Rather, it is proposed that this nonaromatic intermediate CoA ester is further metabolized in a complex reaction sequence comprising enoyl-CoA isomerization/hydration, nonoxygenolytic ring opening, and dehydrogenation catalyzed by the PaaG and PaaZ proteins. The subsequent beta-oxidation-type degradation of the resulting CoA dicarboxylate via beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA appears to be catalyzed by the PaaJ, PaaF and PaaH proteins.  相似文献   

13.
High affinity uptake of choline, GABA, norepinephrine and serotonin into synaptosomes and ganglioside content of cortices served as indices of synaptic development. Both parameters indicated that phenylacetate contributed to the retarded maturation of synapses in the cerebrum of the adult rat, previously treated with either phenylacetate or one of its precursors, phenylalanine (with p-CPA) and phenylethylamine, during the first 21 days of life. In these groups of rats, which also exhibited a pronounced deficit in learning capacity, the velocity of high affinity synaptosomal uptake of choline was reduced to a greater extent than that of GABA, and there was a profound decrease in the ganglioside content of cerebral cortex. In contrast, synaptic maturation and behavior of control and phenylpyruvate treated animals were similar. These findings lend strong support to our contention that phenylacetate, produced in excessive amounts in PKU, is most likely a primary cause of the mental retardation.  相似文献   

14.
Phenylalanine ammonia-lyase was entrapped in silk fibroin. The entrapped enzyme showed a similar Km for Phe and pH optimum to the free enzyme. It was resistant against chymotrypsin and trypsin in vitro. To assess the activity in vivo, the free or entrapped enzymes and then Phe were injected into rat duodenum, and cinnamate, a product, in plasma was determined as the most direct evidence of the enzyme activity. The entrapped enzyme but not the free form caused a marked raise of plasma cinnamate. It declined with a half life of about 45 min, which was significantly longer than that (10-15 min) observed upon i.v. administration of cinnamate. These results indicated that the entrapped enzyme was actively degrading Phe in the intestinal tract. Entrapment of phenylalanine ammonia-lyase in fibroin thus provides a new prospect for oral enzyme therapy of phenylketonuria.  相似文献   

15.
Production of the antibiotic tropodithietic acid (TDA) depends on the central phenylacetate catabolic pathway, specifically on the oxygenase PaaABCDE, which catalyzes epoxidation of phenylacetyl-coenzyme A (CoA). Our study was focused on genes of the upper part of this pathway leading to phenylacetyl-CoA as precursor for TDA. Phaeobacter gallaeciensis DSM 17395 encodes two genes with homology to phenylacetyl-CoA ligases (paaK1 and paaK2), which were shown to be essential for phenylacetate catabolism but not for TDA biosynthesis and phenylalanine degradation. Thus, in P. gallaeciensis another enzyme must produce phenylacetyl-CoA from phenylalanine. Using random transposon insertion mutagenesis of a paaK1-paaK2 double mutant we identified a gene (ior1) with similarity to iorA and iorB in archaea, encoding an indolepyruvate:ferredoxin oxidoreductase (IOR). The ior1 mutant was unable to grow on phenylalanine, and production of TDA was significantly reduced compared to the wild-type level (60%). Nuclear magnetic resonance (NMR) spectroscopic investigations using (13)C-labeled phenylalanine isotopomers demonstrated that phenylalanine is transformed into phenylacetyl-CoA by Ior1. Using quantitative real-time PCR, we could show that expression of ior1 depends on the adjacent regulator IorR. Growth on phenylalanine promotes production of TDA, induces expression of ior1 (27-fold) and paaK1 (61-fold), and regulates the production of TDA. Phylogenetic analysis showed that the aerobic type of IOR as found in many roseobacters is common within a number of different phylogenetic groups of aerobic bacteria such as Burkholderia, Cupriavidis, and Rhizobia, where it may also contribute to the degradation of phenylalanine.  相似文献   

16.
The reactions leading to cinnamic acids from phenylalanine as only substrate were investigated in organelles from Quercus pedunculata Ehrh. roots. –“F 10 000′” fraction, including mitochondria and micro-bodies, catalyses the first reaction, i.e., cinnamate formation by deamination of phenylalanine. – Microsomal fraction catalyses all the steps from phenylalanine to caffeic acid via cinnamate and p-coumarate. These results suggest that microsomes are the intracellular site of the cinnamic units synthesis. The enzymes involved in these reactions, associated in the same cellular compartment, does not form a multienzyme system. The formation of caffeic acid by isolated microsomes is demonstrated for the first time; the reaction may be realised by an enzyme different from phenolase. – The free phenolic acids are the metabolically active forms.  相似文献   

17.
Veratryl alcohol (VA) is a secondary metabolite of white-rot fungi that produce the ligninolytic enzyme lignin peroxidase. VA stabilizes lignin peroxidase, promotes the ability of this enzyme to oxidize a variety of physiological substrates, and is accordingly thought to play a significant role in fungal ligninolysis. Pulse-labeling and isotope-trapping experiments have now clarified the pathway for VA biosynthesis in the white-rot basidiomycete Phanerochaete chrysosporium. The pulse-labeling data, obtained with 14C-labeled phenylalanine, cinnamic acid, benzoic acid, and benzaldehyde, showed that radiocarbon labeling followed a reproducible sequence: it peaked first in cinnamate, then in benzoate and benzaldehyde, and finally in VA. Phenylalanine, cinnamate, benzoate, and benzaldehyde were all efficient precursors of VA in vivo. The isotope-trapping experiments showed that exogenous, unlabeled benzoate and benzaldehyde were effective traps of phenylalanine-derived 14C. These results support a pathway in which VA biosynthesis proceeds as follows: phenylalanine → cinnamate → benzoate and/or benzaldehyde → VA.  相似文献   

18.
A microsomal preparation from irradiated parsley cell cultures catalyses the NADPH and dioxygen-dependent hydroxylation of (S)-naringenin [(S)-5, 7, 4'-trihydroxyflavanone] to eriodictyol (5, 7, 3', 4'-tetrahydroxyflavanone). Dihydrokaempferol, kaempferol, and apigenin were also substrates for the 3'-hydroxylase reaction. In contrast prunin (naringenin 7-O-beta-glucoside) was not converted by the enzyme. The microsomal preparation, which also contains cinnamate 4-hydroxylase, did not catalyse hydroxylation of 4-coumaric acid to caffeic acid. 3'-Hydroxylase activity is partially inhibited by carbon monoxide in the presence of oxygen as well as by cytochrome c and NADP+. These properties suggest that the enzyme is a cytochrome P-450-dependent flavonoid 3'-monooxygenase. Pronounced differences in the inhibition of flavonoid 3'-hydroxylase and cinnamate 4-hydroxylase were found with EDTA, potassium cyanide and N-ethylmaleimide. Irradiation of the cell cultures led to increase of flavonoid 3'-hydroxylase activity with a maximum at about 23 h after onset of irradiation and subsequent decrease. This is similar to light-induction of phenylalanine ammonialyase and cinnamate 4-hydroxylase. In contrast, treatment of the cell cultures with a glucan elicitor from Phytophthora megasperma f. sp. glycinea did not induce flavonoid 3'-hydroxylase nor chalcone isomerase but caused a strong increase in the activities of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, and NADPH--cytochrome reductase. The results prove that flavonoid 3'-hydroxylase and cinnamate 4-hydroxylase are two different microsomal monooxygenases.  相似文献   

19.
Phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and the C4H redox partner cytochrome p450 reductase (CPR) are important in allocating significant amounts of carbon from phenylalanine into phenylpropanoid biosynthesis in plants. It has been proposed that multienzyme complexes (MECs) containing PAL and C4H are functionally important at this entry point into phenylpropanoid metabolism. To evaluate the MEC model, two poplar PAL isoforms presumed to be involved in either flavonoid (PAL2) or in lignin biosynthesis (PAL4) were independently expressed together with C4H and CPR in Saccharomyces cerevisiae, creating two yeast strains expressing either PAL2, C4H and CPR or PAL4, C4H and CPR. When [(3)H]Phe was fed, the majority of metabolized [(3)H]Phe was incorporated into p-[(3)H]coumarate, and Phe metabolism was highly reduced by inhibiting C4H activity. PAL alone expressers metabolized very little phenylalanine into cinnamic acid. To test for intermediate channeling between PAL and C4H, we fed [(3)H]Phe and [(14)C]cinnamate simultaneously to the triple expressers, but found no evidence for channeling of the endogenously synthesized [(3)H]cinnamate into p-coumarate. Therefore, efficient carbon flux from Phe to p-coumarate via reactions catalyzed by PAL and C4H does not appear to require channeling through a MEC in yeast, and instead biochemical coupling of PAL and C4H is sufficient to drive carbon flux into the phenylpropanoid pathway. This may be the primary mechanism by which carbon allocation into phenylpropanoid metabolism is controlled in plants.  相似文献   

20.
Erez A 《Plant physiology》1973,51(2):409-411
A possible error in spectrophotometric determination of cinnamate, the product of phenylalanine ammonia-lyase activity, using nonpurified protein extracts has been shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号