首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mudd SH  Datko AH 《Plant physiology》1989,90(1):296-305
The results of experiments in which intact plants of Lemna paucicostata were labeled with either l-[(3)H(3)C]methionine, l-[(14)CH(3)]methionine, or [1,2-(14)C]ethanolamine support the conclusion that growth in concentrations of choline of 3.0 micromolar or above brings about marked decreases in the rate of biosynthesis of methylated forms of ethanolamine (normally present chiefly as phosphatidylcholine, with lesser amounts of choline and phosphocholine). The in vivo locus of the block is at the committing step in the biosynthetic sequence at which phosphoethanolamine is methylated by S-adenosylmethionine to form phosphomethylethanolamine. The block is highly specific: flow of methyl groups originating in methionine continues into S-adenosylmethionine, S-methylmethionine, the methyl moieties of pectin methyl ester, and other methylated metabolites. When choline uptake is less than the total that would be synthesized by control plants, phosphoethanolamine methylation is down-regulated to balance the uptake; total plant content of choline and its derivatives remains essentially constant. At maximum down-regulation, phosphoethanolamine methylation continues at 5 to 10% of normal. A specific decrease in the total available activity of AdoMet: phosphoethanolamine N-methyltransferase, as well as feedback inhibition of this enzyme by phosphocholine, and prevention of accumulation of phosphoethanolamine by down-regulation of ethanolamine synthesis may each contribute to effective control of phosphoethanolamine methylation. This down-regulation may necessitate major changes in S-adenosylmethionine metabolism. Such changes are discussed.  相似文献   

2.
Synthesis of Ethanolamine and Its Regulation in Lemna paucicostata   总被引:2,自引:2,他引:0       下载免费PDF全文
Mudd SH  Datko AH 《Plant physiology》1989,91(2):587-597
The metabolism of ethanolamine and its derivatives in Lemna paucicostata has been investigated, with emphasis on the path-way for synthesis of phosphoethanolamine, a precursor of phosphatidylcholine in higher plants. In experiments involving labeling of intact plants with radioactive serine, ambiguities of interpretation due to entry of radioactivity into methyl groups of methylated ethanolamine derivatives were mitigated by pregrowth of plants with methionine. Difficulties due to labeling of diacylglyceryl moieties of phospholipids were avoided by acid hydrolysis of crucial samples and determination of radioactivity in isolated serine or ethanolamine moieties. The results obtained from such experiments are most readily reconciled with the biosynthetic sequence: serine → ethanolamine → phosphoethanolamine → phosphatidylethanolamine. A possible alternative is: serine → phosphatidylserine → phosphatidylethanolamine → ethanolamine → phosphoethanolamine. Cell-free extracts of L. paucicostata were shown to produce CO2 from the carbon originating as C-1 of serine at a rate sufficient to satisfy the demand for ethanolamine moieties. A number of experiments produced no support for a hypothetical role for phosphoserine in phosphoethanolamine formation. Uptake of exogenous ethanolamine commensurately down-regulates the synthesis of ethanolamine moieties (considered as a whole, and regardless of their state of derivatization at the time of their formation). In agreement with previous observations, uptake of exogenous choline down-regulates the methylation of phosphoethanolamine, without being accompanied by secondary accumulation of a marked excess of ethanolamine derivatives.  相似文献   

3.
Choline Synthesis in Spinach in Relation to Salt Stress   总被引:5,自引:2,他引:3       下载免费PDF全文
Choline metabolism was examined in spinach (Spinacia oleracea L.) plants growing under nonsaline and saline conditions. In spinach, choline is required for phosphatidylcholine synthesis and as a precursor for the compatible osmolyte glycine betaine (betaine). When control (nonsalinized) leaf discs were incubated for up to 2 h with [1,2-14C]ethanolamine, label appeared in the N-methylated derivatives of phosphoethanolamine including phosphomono-, phosphodi-, and phosphotri- (i.e. phosphocholine) methyl-ethanolamine, as well as in choline and betaine, whereas no radioactivity could be detected in the mono- and dimethylated derivatives of the free base ethanolamine. Leaf discs from salinized plants showed the same pattern of labeling, although the proportion of label that accumulated in betaine was almost 3-fold higher in the salinized leaf discs. Enzymes involved in choline metabolism were assayed in crude leaf extracts of plants. The activites of ethanolamine kinase and of the three S-adenosylmethionine:phospho-base N-methyltransferase enzymes responsible for N-methylating phosphoethanolamine to phosphocholine were all higher in extracts of plants salinized step-wise to 100, 200, or 300 mM NaCI compared with controls. In contrast, choline kinase, phosphocholine phosphatase, and cytidine 5[prime]-triphosphate: phosphocholine cytidylyltransferase activities showed little variation with salt stress. Thus, the increased diversion of choline to betaine in salt-stressed spinach appears to be mediated by the increased activity of several key enzymes involved in choline biosynthesis.  相似文献   

4.
Mudd SH  Datko AH 《Plant physiology》1989,90(1):306-310
The results of experiments in which intact plants of Lemna paucicostata were labeled with either l-[3H3C]methionine, l-[14CH3]methionine, or [1,2-14C]ethanolamine support the conclusion that growth in concentrations of choline of 3.0 micromolar or above brings about marked decreases in the rate of biosynthesis of methylated forms of ethanolamine (normally present chiefly as phosphatidylcholine, with lesser amounts of choline and phosphocholine). The in vivo locus of the block is at the committing step in the biosynthetic sequence at which phosphoethanolamine is methylated by S-adenosylmethionine to form phosphomethylethanolamine. The block is highly specific: flow of methyl groups originating in methionine continues into S-adenosylmethionine, S-methylmethionine, the methyl moieties of pectin methyl ester, and other methylated metabolites. When choline uptake is less than the total that would be synthesized by control plants, phosphoethanolamine methylation is down-regulated to balance the uptake; total plant content of choline and its derivatives remains essentially constant. At maximum down-regulation, phosphoethanolamine methylation continues at 5 to 10% of normal. A specific decrease in the total available activity of AdoMet: phosphoethanolamine N-methyltransferase, as well as feedback inhibition of this enzyme by phosphocholine, and prevention of accumulation of phosphoethanolamine by down-regulation of ethanolamine synthesis may each contribute to effective control of phosphoethanolamine methylation. This down-regulation may necessitate major changes in S-adenosylmethionine metabolism. Such changes are discussed.  相似文献   

5.
An analysis of the available data on the cytidine pathway for the synthesis of phosphatidylcholine and phosphatidylethanolamine, by the logic derived from the theoretical principles of metabolic regulation, shows that the first two reactions catalysed by choline (ethanolamine) kinase and phosphocholine (phosphoethanolamine) cytidylyltransferase are rate-limiting, whereas the phosphocholine (phosphoethanolamine) transferase step is near equilibrium in rat liver.  相似文献   

6.
Abstract: In most cell types the major pathway of sphingomyelin synthesis is the direct transfer of the phosphocholine head group from phosphatidylcholine to ceramide catalyzed by the enzyme l -acylsphingosine:phosphatidylcholine phosphocholinetransferase (SM synthase; EC 2.7.8.-). Although this pathway has been demonstrated in brain tissue, its quantitative importance has been questioned. An alternative biosynthetic pathway for sphingomyelin synthesis in brain tissue has been proposed, viz., the direct transfer of phosphoethanolamine from phosphatidylethanolamine to ceramide, followed by methylation of the ethanolamine moiety to a choline group. We have evaluated various possible biosynthetic pathways of sphingomyelin synthesis in rat spinal cord oligodendrocytes, the myelin-forming cells of the CNS, by labeling cells in culture with radiolabeled choline, ethanolamine, or serine. Our results indicate that, in oligodendrocytes, most of the phosphocholine for the biosynthesis of sphingomyelin is provided by phosphatidylcholine, which is predominantly derived from de novo synthesis. No evidence was found for the operation of the alternative pathway via ceramide-phosphoethanolamine. Furthermore, our results indicate that a small pool of phosphatidylcholine is provided by methylation of phosphatidylethanolamine, which in turn is formed preferentially by decarboxylation of phosphatidylserine.  相似文献   

7.
Activities have been determined in subcellular fractions of livers from choline-deficient and normals rats for the enzymes that convert choline and ethanolamine to phosphatidylcholine and phosphatidylethanolamine respectively, that methylate phosphatidylethanolamine to yield phosphatidylcholine, and that oxidize choline to betaine. The activities of ethanolamine kinase, phosphoethanolamine cytidylyltransferase, and CDP-ethanolamine: 1,2-diacylglycerol phosphoethanolaminetransferase are not changed in the livers from choline-deficient rats for at least 18 days. Similarly, the activities of choline kinase and CDP-choline: 1,2-diacylglycerol phosphocholine transferase were unaffected by choline depletion. A decrease of 30-41% was observed, however, in the mitochondrial oxidation of choline to betaine. Also, the activity of the phosphocholine cytidylyltransferase was reduced in the choline-deficient livers to 60% olf the control values. The only observed increase in enzyme activity was a 62% elevation of the phosphatidylethanolamine-S-adenosylmethionine methyltransferase activity after 2 days of choline deficiency. This increased activity was maintained for at least 18 days of choline deprivation. The results suggest a lack of adaptive change in the levels of these phospholipid biosynthetic enzymes as a result of choline deficiency.  相似文献   

8.
Datko AH  Mudd SH 《Plant physiology》1988,88(3):854-861
The methylation steps in the biosynthesis of phosphatidylcholine by tissue culture preparations of carrot (Daucus carota L.) and soybean (Glycine max), and by soybean leaf discs, have been studied. Preparations were incubated with tracer concentrations of l-[3H3C]methionine and the kinetics of appearance of radioactivity in phosphomethylethanolamine, phosphodimethylethanolamine, phosphocholine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, methylethanolamine, dimethylethanolamine, and choline followed at short incubation times. With soybean (tissue culture or leaves), an initial methylation utilizes phosphoethanolamine as substrate, forming phosphomethylethanolamine. The latter is converted to phosphatidylmethylethanolamine, which is successively methylated to phosphatidyldimethyethanolamine and to phosphatidylcholine. With carrot, again, an initial methylation is of phosphoethanolamine. Subsequent methylations occur at both the phospho-base and phosphatidyl-base levels. Both of these patterns differ qualitatively from that previously demonstrated in Lemna (SH Mudd, AH Datko 1986 Plant Physiol 82: 126-135) in which all three methylations occur at the phospho-base level. For soybean and carrot, some added contribution from initial methylation of phosphatidylethanolamine has not been excluded. These results, together with those from similar experiments carried out with water-stressed barley leaves (WD Hitz, D Rhodes, AD Hanson 1981 Plant Physiol 68: 814-822) and salinized sugarbeet leaves (AD Hanson, D Rhodes 1983 Plant Physiol 71: 692-700) suggest that in higher plants some, perhaps all, phosphatidylcholine synthesis occurs via a common committing step (conversion of phosphoethanolamine to phosphomethylethanolamine) followed by a methylation pattern which differs from plant to plant.  相似文献   

9.
The incorporation of radioactivity from [1,2-34C]choline, [1,2-34C]ethanolamine, [3-14C]serine and [methyl-14C]methionine into lipids was studied in growing cultures of Crithidia fasciculata. Lecithin was formed both from choline and by the methylation of phosphatidylethanolamine. Mono- and dimethylphosphatidylethanolamines were present in no more than trace amounts. Growth of the protozoa in media containing choline (1 mM) did not decrease synthesis by the methylation pathway. Phosphatidylethanolamine was formed from ethanolamine. Radioactivity from serine also was present in both phosphatidylethanolamine and lecithin; however, the presumed intermediate, phosphatidylserine, could not be detected.  相似文献   

10.
The metabolism of the molecular species of phosphatidylethanolamine derived from [3H]ethanolamine and molecular species of phosphatidylcholine derived from [3H]ethanolamine or [methyl-3H]choline has been studied in rat hepatocytes. After an initial pulse of radioactivity for 1 h and a chase for up to 24 h, the cells were harvested and the incorporation of label into the various molecular species of phosphatidylethanolamine and phosphatidylcholine was determined. The incorporation and metabolism of choline- and ethanolamine-labeled phosphatidylcholine was consistent with deacylation of some species of phosphatidylcholine and reacylation to form molecular species of phosphatidylcholine with different fatty acyl components. In contrast, such remodeling of ethanolamine-labeled phosphatidylethanolamine was not evident. Radioactivity disappeared from all molecular species of phosphatidylethanolamine without an increase in any of the species of phosphatidylethanolamine. This radioactivity was recovered in water-soluble metabolites in the cells and medium. Phosphatidylethanolamine (16:0-22:6) had an initial turnover rate (5.8 nmol/h) which was two or more times that of any of the other major molecular species of phosphatidylethanolamine. The molecular species of phosphatidylethanolamine displayed biphasic turnover profiles. The second rate of decay of radioactivity between 12 and 24 h was 2-4 times slower than the initial decay rate. During the first 2 h of the chase period, phosphatidylcholine was a major metabolite of labeled phosphatidylethanolamine. Subsequently, there was minimal conversion of phosphatidylethanolamine to phosphatidylcholine which suggests that only newly made phosphatidylethanolamine is available as a substrate for methylation to phosphatidylcholine.  相似文献   

11.
The incubation of neurons from chick embryos in primary culture with [3H]ethanolamine revealed the conversion of this base into monomethyl, dimethyl and choline derivatives, including the corresponding free bases. Labelling with [methyl-3H]monomethylethanolamine and [methyl-3H]dimethylethanolamine supported the conclusion that in chick neuron cultures, phosphoethanolamine appears to be the preferential substrate for methylation, rather than ethanolamine or phosphatidylethanolamine. The methylation of the latter two compounds, in particular that of phosphatidylethanolamine, was seemingly stopped at the level of their monomethyl derivatives. Fetal rat neurons in primary culture incubated with [3H]ethanolamine showed similar results to those observed with chick neurones. However, phosphoethanolamine and phosphatidylethanolamine and, to a lesser extent, free ethanolamine, appeared to be possible substrates for methylation reactions. The methylation of water-soluble ethanolamine compounds de novo was further confirmed by experiments performed in vivo by intraventricular injection of [3H]ethanolamine. Phosphocholine and the monomethyl and dimethyl derivatives of ethanolamine were detected in the brain 15 min after injection.  相似文献   

12.
Unlike humans and yeast, Plasmodium falciparum, the agent of the most severe form of human malaria, utilizes host serine as a precursor for the synthesis of phosphatidylcholine via a plant-like pathway involving phosphoethanolamine methylation. The monopartite phosphoethanolamine methyltransferase, Pfpmt, plays an important role in the biosynthetic pathway of this major phospholipid by providing the precursor phosphocholine via a three-step S-adenosyl-L-methionine-dependent methylation of phosphoethanolamine. In vitro studies showed that Pfpmt has strong specificity for phosphoethanolamine. However, the in vivo substrate (phosphoethanolamine or phosphatidylethanolamine) is not yet known. We used yeast as a surrogate system to express Pfpmt and provide genetic and biochemical evidence demonstrating the specificity of Pfpmt for phosphoethanolamine in vivo. Wild-type yeast cells, which inherently lack phosphoethanolamine methylation, acquire this activity as a result of expression of Pfpmt. The Pfpmt restores the ability of a yeast mutant pem1Deltapem2Delta lacking the phosphatidylethanolamine methyltransferase genes to grow in the absence of choline. Lipid analysis of the Pfpmt-complemented pem1Deltapem2Delta strain demonstrates the synthesis of phosphatidylcholine but not the intermediates of phosphatidylethanolamine transmethylation. Complementation of the pem1Deltapem2Delta mutant relies on specific methylation of phosphoethanolamine but not phosphatidylethanolamine. Interestingly, a mutation in the yeast choline-phosphate cytidylyltransferase gene abrogates the complementation by Pfpmt thus demonstrating that Pfpmt activity is directly coupled to the Kennedy pathway for the de novo synthesis of phosphatidylcholine.  相似文献   

13.
About 50% of the ethanolamine in phosphatidylethanolamine in Tetrahymena is replaced by 3-aminopropan-1-ol when the compound is added to the growth medium. The phosphatidylpropanolamine which is formed is not converted into the corresponding phosphatidylcholine analogue by methylation. There is an increase in phosphatidylcholine formed by the phosphotransferase pathway from free [3H]choline and a decrease in the phosphatidylcholine formed by the methylation pathway from [14C]methionine. The nature of the observed phospholipid alterations suggests that the regulation of phosphatidylcholine biosynthesis in Tetrahymena may be different from that found in higher eukaryotes.  相似文献   

14.
The conversion of phosphoethanolamine to phosphocholine requires 3 separate N-methyltransferases. We had previously purified the enzyme catalyzing the last methylation, phosphodimethylethanolamine N-methyltransferase. We have successfully purified the enzyme catalyzing the initial methylation of phosphoethanolamine. A 434 fold purified enzyme from rat brain was obtained by the sequential use of ammonium sulfate fractionation, Q-Sepharose fast flow column chromatography and a -aminoethyl agarose column chromatography. The pH optimum was 11 or greater, the Km value for phosphoethanolamine was 167.8±41.7 M and the Vmax was 487.3±85 mmoles/mg/hr. The kinetics for S-adenosyl-methionine, the methyldonor, has characteristics of cooperative binding with a Km of 1.805±0.59 mM and a Vmax of 16.9±3.6 moles/mg/hr. The activity was stimulated 6 fold by 2.5 mM MnCl2 and inhibited by DZA and S-adenosylhomocysteine. These results reinforce the early in vivo observations which had provided suggestive evidence for the existence of a pathway for the methylation of phosphoethanolamine to phosphocholine in rat brain.Abbreviations used Adomet S-adenosylmethionine - AdoHcy S-adenosyl-homocysteine - CAPS 3-(cyclohexyl)amino-1-propanesulphonic acid - Cho choline - 3-DZA 3-deazaadenosine - Etn ethanolamine - N-MT N-methyltransferase - PEG polyethyleneglycol - PMSF phenylmethanesulphonyl fluoride - PEtn phosphoethanolamine - PCho phosphocholine - PMe2Etn phosphodimethylethanolamine - PtdCho phosphatidylcholine - PtdEtn phosphatidylethanolamine  相似文献   

15.
木文研究了多种氨基酸、乙醇胺和甲基乙醇胺对细胞摄取胆碱和合成磷脂酰胆碱(PC)的影响,发现多种氨基酸非竞争性地抑制细胞摄取胆碱。含胆碱代谢物的分析显示胆碱转变成CDP-胆碱,随之形成PC均不受氨基酸影响。乙醇胺竞争性地抑制胆碱摄取,且存在剂量依赖关系。乙醇胺能明显抑制胆碱激酶活性,但细胞内胆碱和磷酸胆碱的代谢池并不改变,提示乙醇胺不影响胆碱转变成磷酸胆碱。根据CDP-胆碱和PC的比放射性分布,乙醇胺也不影响PC的生物合成。甲基乙醇胺抑制胆碱摄入的程度强于乙醇胺,并抑制胆碱激酶和CTP:磷酸胆碱胞苷转移酶活性,含胆碱代谢物以CDP-胆碱下降最显著;提示甲基乙醇胺不仅抑制胆碱摄入而且还干扰了CDP-胆碱通路。  相似文献   

16.
Sphingomyelin synthesis was studied in slices of rat heart by using [Me-14C]choline, [1,2-14C]ethanolamine, S-adenosyl-L-[14C]methionine and [32P]Pi as as precursors. In the presence of both [Me-14C]choline and [32P]Pi the ratio of the specific radioactivities of 14C and 32P in phosphatidylcholine was greater than in sphingomyelin at all the times studied. This suggested that synthesis of phosphatidylcholine and sphingomyelin de novo did not involve the utilization of a common pool of cytidine diphosphate choline. In addition, studies with [1,2-14C]ethanolamine and S-adenosyl-L-[14C]methionine indicated that a quantitatively significant pool of choline, derived from these precursors, was selectively utilized for sphingomyelin formation. This pool was not represented by phosphatidylcholine formed by methylation of phosphatidylethanolamine or by other pathways.  相似文献   

17.
Plasmodium knowlesi-infected erythrocytes efficiently incorporated choline and metabolize it into phosphatidylcholine via the de novo Kennedy pathway. No formation of either betaine or acetylcholine was detected. At physiological concentrations of external choline, isotopic equilibrium between intracellular choline and phosphocholine was reached in less than 1 h, whereas labeled phosphatidylcholine accumulated constantly, until at least 210 min. During this time, intracellular CDP-choline remained quite low compared to phosphocholine, which suggests that choline-phosphate cytidylyltransferase (EC 2.7.7.15) is the rate-limiting step of the Kennedy pathway. However, this activity was probably not saturated in situ by phosphocholine, since the external choline concentration, up to 100 microM, can regulate phosphatidylcholine biosynthesis via the level of intracellular phosphocholine. This was corroborated by the respective velocities and affinity characteristics of the three enzymatic steps involved in the Kennedy pathway. These results, together with the localization of both choline metabolites and enzyme activities, provide a precise scheme of the dynamics of de novo phosphatidylcholine biosynthesis. Concerning the alternative pathway for phosphatidylcholine biosynthesis via the methylation of phosphatidylethanolamine, we show that an increase in de novo phosphatidylcholine biosynthesis could instigate a concomitant decrease in the steps of phosphatidylethanolamine methylation, indicating that the parasite is able to modulate its phosphatidylcholine biosyntheses.  相似文献   

18.
1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [(14)C]ethanolamine incorporation into phospholipids, whereas the incorporation of [(3)H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [(3)H]glycerol and hepatocytes, the appearance of (3)H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [(3)H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of (3)H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-(14)C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [(14)C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes.  相似文献   

19.
The effect of 2-hydroxyethylhydrazine on the phosphatidylethanolamine methylation pathway in yeast was studied. 2-Hydroxyethylhydrazine inhibited the growth of cells. The concentration required for 50% inhibition was 66 microM. The growth rate decreased by 2-hydroxyethylhydrazine was restored by the addition of a low concentration of choline. Incorporation of radioactivity from L-[3-14C]serine, L-[methyl-14C]methionine and S-adenosyl-L-[methyl-14C]methionine into phosphatidylcholine was markedly reduced by 2-hydroxyethylhydrazine. The restoration of growth by choline was not due to the reversal of the inhibition, but to the formation of phosphatidylcholine via the CDPcholine pathway. Thus, the site of action of 2-hydroxyethylhydrazine in vivo was the phosphatidylethanolamine methylation pathway. Experiments with methylation mutants indicated that all three steps of methylation were sensitive to 2-hydroxyethylhydrazine. 2-Hydroxyethylhydrazine was shown to inhibit the methyltransferase after it had become chemically or metabolically transformed in cells. 2-Hydroxyethylhydrazine-resistant mutants were obtained and were found to have a defect in choline transport activity. Genetic data indicated that the uptake of 2-hydroxyethylhydrazine into cells is mediated by the choline transport system.  相似文献   

20.
The methylation steps in the biosynthesis of phosphatidylcholine by castor bean (Ricinus communis L.) endosperm have been studied by pulse-chase labeling. Endosperm halves were incubated with [methyl-(14)C]S-adenosyl-l-methionine, [2-(14)C]ethanolamine, [(14)C]ethanolamine phosphate, or [(14)C]serine phosphate. The kinetics of appearance were followed in the free, phospho-, and phosphatidyl-bases. The initial methylation utilized ethanolamine as a substrate to form methylethanolamine, which was then converted to dimethylethanolamine, choline, and phosphomethylethanolamine. Subsequent methylations occurred at the phospho-base and, to a lesser extent, the phosphatidyl-base levels, after which the radioactivity either remained constant or decreased in these compounds and accumulated in phosphatidylcholine. Although the precursors tested did support the synthesis of choline, the kinetics of the labeling make them unlikely to be the major sources of free choline to be utilized for the nucleotide pathway. A model with two pools of choline is proposed, and the implications of these results for the pathways leading to phosphatidylcholine biosynthesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号