首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hormonally regulated programmed cell death in barley aleurone cells   总被引:13,自引:0,他引:13  
PC Bethke  JE Lonsdale  A Fath    RL Jones 《The Plant cell》1999,11(6):1033-1046
Cell death was studied in barley (cv Himalaya) aleurone cells treated with abscisic acid and gibberellin. Aleurone protoplasts incubated in abscisic acid remained viable in culture for at least 3 weeks, but exposure to gibberellin initiated a series of events that resulted in death. Between 4 and 8 days after incubation in gibberellin, >70% of all protoplasts died. Death, which occurred after cells became highly vacuolated, was manifest by an abrupt loss of plasma membrane integrity followed by rapid shrinkage of the cell corpse. Hydrolysis of DNA began before death and occurred as protoplasts ceased production of alpha-amylase. DNA degradation did not result in the accumulation of discrete low molecular weight fragments. DNA degradation and cell death were prevented by LY83583, an inhibitor of gibberellin signaling in barley aleurone. We conclude that cell death in aleurone cells is hormonally regulated and is the final step of a developmental program that promotes successful seedling establishment.  相似文献   

2.
Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.  相似文献   

3.
4.
The heat-shock responses of barley (Hordeum vulgare L. cv Hi- malaya) aleurone layers incubated with or without gibberellic acid (GA3) were compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that heat shock blocked the synthesis and secretion of secretory proteins from GA3-treated layers but not untreated layers. This suppression of secretory protein synthesis has been correlated with changes in endoplasmic reticulum (ER) membranes (F.C. Belanger, M. R. Brodl, T.-h.D. Ho [1986] Proc Natl Acad Sci USA 83: 1354-1358; L. Sticher, A.K. Biswas, D.S. Bush, R.L. Jones [1990] Plant Physiol 92: 506-513). Our secretion data suggested that the ER membranes of aleurone layers incubated without GA3 may be more heat shock tolerant. To investigate this, the lipid profiles of membrane extracts in aleurone layers labeled with [14C]glycerol were examined. Heat shock markedly increased [14C]glycerol incorporation into phosphatidylcholine (PC), and gas chromatography revealed an increase in the amount of saturated fatty acids associated with thin layer chromatography-purified PC in GA3-treated layers. In contrast, aleurone layers incubated without GA3 at normal temperature contained PC-associated fatty acids with a greater degree of saturation than GA3-treated layers. Heat shock modestly increased the degree of fatty acid saturation in untreated aleurone layers. This same trend was noted in fatty acids isolated from ER membranes purified by continuous sucrose density centrifugation. We propose that increased fatty acid saturation may help sustain ER membrane function in heat-shocked aleurone layers incubated in the absence of GA3.  相似文献   

5.
Taiz L  Starks JE 《Plant physiology》1977,60(2):182-189
When imbibed, deembryonated halfseeds from barley (Hordeum vulgare L., var. Himalaya) are incubated in buffer, the DNA content of the aleurone layer increases 25 to 40% over a 24-hour period. In contrast, the DNA of isolated aleurone layers declines by 20% over the same time period. Gibberellic acid (GA) causes a reduction in DNA levels in both halfseed aleurone layers and isolated aleurone layers. GA also increases the specific radioactivity of [3H]thymidine-labeled halfseed aleurone layer DNA during the first 12 hours of treatment. Pulse-chase studies demonstrated that the newly synthesized DNA is metabolically labile.  相似文献   

6.
T D Sutliff  M B Lanahan    T H Ho 《The Plant cell》1993,5(11):1681-1692
The promoters of a majority of cereal alpha-amylase genes contain three highly conserved sequences (gibberellin response element, box I, and pyrimidine box). Recent studies have demonstrated the functional importance of four regions that either coincide with or are immediately proximal to these three conserved elements as well as an upstream Opaque-2 binding sequence. In this study, we describe the characterization of nuclear protein factors from barley aleurone layers whose binding activity toward gibberellin response complex sequences from the barley low-pl alpha-amylase gene (Amy32b) promoter is stimulated by gibberellin A3 (GA3) treatment. Barley proteins isolated from crude nuclear extracts prepared from aleurone layers incubated with or without GA3 were fractionated by anion exchange fast protein liquid chromatography and studied using band shift assays, sequence-specific competitions, and DNase I footprinting. A GA3-dependent binding activity eluting at 210 mM KCl was shown to bind specifically to the gibberellin response element and the closely associated box I. DNase I footprinting with the proteins in this fraction indicated interactions with sequences in the gibberellin response element and box I. A second DNA binding activity eluting at 310 mM KCl was present constitutively in extracts prepared from tissues incubated both in the absence and in the presence of hormone. Proteins in this fraction were able to bind to many DNA sequences and, in general, were largely nonspecific. DNase I footprinting with the proteins in this fraction indicated a large area of protection with a single unoccupied region located at the 3' end of box I. The possible function of such an activity in hormone regulation of the alpha-amylase genes is discussed.  相似文献   

7.
The expression of the Adh1 gene (alcohol dehydrogenase, EC 1.1.1.1) was studied in the aleurone layer of barley ( Hordeum vulgare cv. Himalaya). Expression increased markedly during grain development at the levels of activity, enzyme protein and mRNA. mRNA content, but not enzyme activity, could be increased further by exogenous abscisic acid (ABA) when isolated, de-embryonated developing grains were pre-treated with gibberellic acid (GA3) or fluridone. In isolated mature aleurone layers incubated with exogenous hormones, ADH mRNA was strongly up-regulated by ABA and down-regulated by GA3 within 6 h. With ABA, this increase in mRNA was followed by an increase in ADH protein and activity, peaking at 18 h. With GA3, the decrease in mRNA was accompanied by simultaneous decreases in protein and activity. In general, GA3 counteracted the effect of ABA and vice versa. In the aleurone of germinating grain, ADH activity decayed in a distal direction from the embryo, consistent with down-regulation by gibberellin(s) diffusing from it. It was concluded that ADH gene expression in the aleurone of the intact grain is regulated by an ABA/gibberellin interaction.  相似文献   

8.
Using a knownGAmyb gene as the probe, two fully identical clones were isolated from a barley aleurone cDNA library. Sequence analysis showed that their 5′ termini are highly homoIogous to the 3′ termini ofGAmyb (97%) and their 3′ termini share no significant homology with any myb genes. Therefore, the deduced protein may hold intact putativeGAmyb activation domain but lack the normal DNA-binding domain. Northern blot reveals thathumyb expression in barley aleurone layers is strongly up-regulated by gibberellin (GA) and down-regulated by abscisic acid (APIA). The tissue-and developmental-stage-specificity ofhvmyb was also found, which was only expressed in barley aleurone cells and dropped to non-detectable level soon after germination.  相似文献   

9.
A fast and easy technique for the isolation of aleurone layers   总被引:3,自引:1,他引:2       下载免费PDF全文
Murthy PP 《Plant physiology》1989,90(2):388-389
Although the aleurone layer of ceral grain seeds has many advantages for the study of gibberellin action, it has the disadvantage that the hand-isolation of the aleurone layers is time-consuming. To overcome this disadvantage, a commercially available pasta machine was modified and used to remove aleurone layers from imbibed barley (Hordeum vulgare) seeds. This equipment allows isolation of a thousand layers in 5 minutes compared to the 3 to 4 hours required to hand-isolate them. The machine-made aleurone layers are gibberellic-acid responsive and the response is similar both qualitatively and quantitatively to that of hand-isolated layers.  相似文献   

10.
The hydrolytic enzyme alpha-amylase (EC 3.2.1.1) is produced mainly in aleurone cells of germinating cereals, and the phytohormone gibberellin (GA) is essential for its induction. However, in rice (Oryza sativa L.), sulfuric acid (H(2)SO(4)) induces alpha-amylase production in aleurone tissue even in the absence of GA. Here, the pre-treatment of rice aleurone cells with H(2)SO(4) and incubation in water induced alpha-amylase activity, as if the cells had been incubated in GA solution.  相似文献   

11.
R. L. Jones 《Protoplasma》1987,138(2-3):73-88
Summary The cytochemical localization of adenosine triphosphatase (ATPase) was studied in the aleurone layer of barley (Hordeum vulgare L. cv. Himalaya). Isolated barley aleurone layers secrete numerous enzymes having acid phosphatase activity, including ATPase. The secretion of these enzymes was stimulated by incubation of the aleurone layer in gibberellic acid (GA3). ATPase was localized using the metal-salt method in tissue incubated in CaCl2 with and without GA3. In sections of tissue incubated without GA3, cytochemical staining was confined to a narrow band of cytoplasm adjacent to the starchy endosperm and to the cell wall of the innermost tier of aleurone cells. Cytochemical staining was absent from the organelles of tissues not treated with GA3. In tissue incubated in the presence of GA3, cytochemical staining was evident throughout the cytoplasm and cell walls of the tissue. In the cell wall, electron-dense deposits were found only in digested channels. The cell-wall matrix of GA3-treated aleurone did not stain, indicating that it does not permit diffusion of enzyme. In the cytoplasm of GA3-treated aleurone, all organelles except microbodies, plastids, and spherosomes stained for ATPase activity; endoplasmic reticulum (ER), Golgi apparatus, and mitochondria showed intense deposits of stain. The ER of the aleurone is a complex system made up of flattened sheets of membrane, which may be associated with both the Golgi apparatus and the plasma membrane. The dictyosome did not stain uniformly for ATPase activity; rather there was a gradation in staining of the cisternae from thecis (lightly stained) to thetrans (heavily stained) face. Vesicles associated with dictyosome cisternae also stained intensely as did the protein bodies of GA3-treated aleurone cells.  相似文献   

12.
Using a knownGAmyb gene as the probe, two fully identical clones were isolated from a barley aleurone cDNA library. Sequence analysis showed that their 5′ termini are highly homoIogous to the 3′ termini ofGAmyb (97%) and their 3′ termini share no significant homology with any myb genes. Therefore, the deduced protein may hold intact putativeGAmyb activation domain but lack the normal DNA-binding domain. Northern blot reveals thathumyb expression in barley aleurone layers is strongly up-regulated by gibberellin (GA) and down-regulated by abscisic acid (APIA). The tissue-and developmental-stage-specificity ofhvmyb was also found, which was only expressed in barley aleurone cells and dropped to non-detectable level soon after germination. EMBL accession number Y14658.  相似文献   

13.
Barley (c.v. Himalaya) aleurone layers were incubated in [3H]gibberellin A1 (GA1) at low temperatures. At 3 and 4 C, 3H-activity was steadily accumulated in aleurone layers, and this accumulation was correlated with significant [3H]GA1 metabolism. At 1 and 1.5 C, metabolism could not be detected, and at these temperatures aleurone layers equilibrated with the [3H]GA1 concentration in the incubation medium. At equilibrium, the total amount of 3H-activity per unit volume in the aleurone layers was higher than in the incubation medium. Aleurone layers incubated at 0.5 C for 72 hours with [3H]GA1 in the presence of saturating levels of carrier GA1 consistently retained lower levels of 3H-activity than when incubated in [3H]GA1 alone. The retention of [3H]GA1 was unaffected by saturating levels of carrier GA8. GA1 retained by barley aleurone layers that were incubated at 0.5 C for 72 hours was able to induce α-amylase synthesis when aleurone layers were subsequently washed and transferred to a gibberellin-free medium at 25 C.  相似文献   

14.
This study demonstrates germination-induced ultrastructural changes in wheat (Triticum aestivum L. cv Arthur) aleurone cells. Seeds imbided for 4 hours in water contained endoplasmic reticulum (ER) or ER-like membranes as vesicles or as short segments of membrane associated with the spherosomes on the periphery of aleurone grains. Aleurone cells incubated between 8 and 10 hours contained abundant ER membranes mainly associated with the nuclear envelope and, to a lesser extent, with the spherosomes surrounding the aleurone grain. The membranes located on the periphery of the nucleus occurred as regions of stacked cisternae. When aleurone cells were analyzed by morphometry, the increase in ER during incubation was found to be greater than 2-fold. During the same incubation period, other organelles did not change significantly. The early increase in ER was not affected by gibberellin incubation. Thus, the rapid proliferation of ER observed during the early stages of germination in aleurone cells of wheat is not likely to be controlled directly by gibberellin.  相似文献   

15.
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.  相似文献   

16.
Active oxygen and cell death in cereal aleurone cells   总被引:17,自引:0,他引:17  
The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.  相似文献   

17.
The localization of acid phosphatase (EC 3.1.3.2) in aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) grains was studied. Phosphatase (EC 3.1.3.26) activity, assayed with phytic acid as the substrate, is present in the dry grain at low leveis and increases during incubation in H2O at 25°C for three days. When aleurone layers are isolated from imbibed grain and incubated for 18 h in buffer with or without 50 μM gibberellic acid (GA3), the level of extractable phosphatase activity increases two- to threefold, and phosphatase is released into the medium. GA, promotes the release of phosphatase activity: aleurone layers incubated in GA, release twice as much phosphatase as layers incubated in buffer. Nine isoenzymes of phosphatase are found in aleurone layers of barley by non-denaturing polyacrvlamide gel electropho-resis. Six of these forms, isoenzymes 1,2,3,5,6 and 8, can be extracted from dry tissue, and after three days of imbibition in H2O an additional isoenzyme, isoenzyme 9, is found in aleurone extracts. When isolated aleurone layers are incubated for a further 22 h in buffer with or without GA3, isoenzyme 7 is found and yet another form, isoenzyme 4, is found in layers incubated in GA3. Eight isoenzymes are released from aleurone layers into the incubation medium. Isoenzymes 5 and 6 are released in buffer both with and without GA3, even when cycloheximide is present; cycloheximide inhibits the release of the other isoenzymes. Isoenzymes 1-4, 7 and 8, on the other hand, are secreted into the incubation medium only when GA3, is present. Isoenzyme 9 is not released into the incubation medium. Acid phosphatase activity was localized in aleurone tissue using cytochemical, cell fractionation, and enzymatic methods. Cytochemical localization of ATPase (EC 3.6.1.8) in aleurone tissue showed the presence of enzyme activity in cell wall, protein bodies, endoplasmic reticulum, Golgi apparatus, and mitochondria. Analysis of organelle fractions isolated by density gradient centrifugation showed that the activity of acid phosphatase isoenzymes 1, 2 and 3 was prominently associated with the phytin globoid of protein bodies, and analysis of the activity released from the cell wall by enzymatic digestion showed that it was almost exclusively isoenzymes 5 and 6.  相似文献   

18.
Summary A procedure has been developed to isolate protoplasts from mature aleurone layers of the malting variety Alexis and four other barley genotypes. It combines induction of endogenous cell wall degrading enzymes together with use of Onuzuka cellulase R 10 and driselase and results in better yields for two varieties than can be obtained with the huskless variety Himalaya. The viability of the freshly isolated protoplasts is greater than 90% and in spite of the presence of gibberellic acid during isolation procedures, most of the protoplasts are at an early developmental stage, as judged by ultrastructure. Gibberellic acid-induced changes in protoplast structure resemble those reported for Himalaya protoplasts. The protoplasts secrete both -amylase (EC 3.2.1.1) and (1-3, 1-4)--glucanase (EC 3.2.1.73) into the surrounding medium. Transfection studies using a low pI -amylase promoter to direct chloramphenicol acetyltransferase expression in aleurone protoplasts from Alexis and Himalaya revealed significant differences in their hormone responsiveness. In the absence of hormones, low levels of expression of the reporter enzyme were obtained in Alexis protoplasts, while high levels were characteristic for Himalaya protoplasts. An 8-fold increase in the expression of the reporter gene was induced by supplying the transfected Alexis protoplasts with gibberellin A3, whereas expression in Himalaya protoplasts remained unchanged. When Himalaya protoplasts were isolated from aleurone layers that had not been incubated with GA3 during the initial stages of protoplasting (the classical procedure), the hormone response of the promoter was 2.5-fold. It is thus possible to optimize the aleurone protoplast isolation procedure for different barley genotypes and mutants of interest in studies of transgenic gene expression and hormone induced secretion of proteins from this unique secretory plant tissue.Abbreviations ABA abscisic acid - APIM aleurone protoplast isolation medium - CAT chloramphenicol acetyltransferase - EDTA ethylenediamine tetraacetic acid - ER endoplasmic reticulum - GA3 gibberellin A3 - IgG immunoglobulin G - MES 2-(N-morpholino)-ethanesulfonic acid - PAGE polyacrylamide gel electrophoresis - PEG polyethylene glycol - pI isoelectric point - PIPES piperazine N,N-bis-(diethanesulfonic acid) - SDS sodium dodecyl sulfate  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号