首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysine Biosynthesis in Barley (Hordeum vulgare L.)   总被引:1,自引:1,他引:0       下载免费PDF全文
Lysine biosynthesis in seedlings of barley (Hordeum vulgare L. var. Emir) was studied by direct injection of the following precursors into the endosperm of the seedlings: acetate-1-14C; acetate-2-14C; pyruvate-1-14C; pyruvate-2-14C; pyruvate-3-14C; alanine-1-14C; aspartic acid-1-14C; aspartic acid-2-14C; aspartic acid-3-14C; aspartic acid-4-14C; α-aminoadipic acid-1-14C; and α, ε-diaminopimelic acid-1-(7)-14C. The distribution of activity in the individual carbon atoms of lysine in the different biosynthetic experiments was determined by chemical degradation. The incorporation percentages and labeling patterns obtained are in agreement with the occurrence of the diaminopimelic acid pathway. The results do not fit the incorporation percentages and labeling patterns expected if the α-aminoadipic acid pathway was operating. However, the results show that barley seedlings are able to convert a small part of the α-aminoadipic acid administered directly to lysine.  相似文献   

2.
Penicillium chrysogenum L2, a lysine auxotroph blocked in the early steps of the lysine pathway before 2-aminoadipic acid, was able to synthesize penicillin when supplemented with lysine. The amount of penicillin produced increased as the level of lysine in the media was increased. The same results were observed in resting-cell systems. Catabolism of [U-14C]lysine by resting cells and batch cultures of P. chrysogenum L2 resulted in the formation of labeled saccharopine and 2-aminoadipic acid. Formation of [14C]saccharopine was also observed in vitro when cell extracts of P. chrysogenum L2 and Wis 54-1255 were used. Saccharopine dehydrogenase and saccharopine reductase activities were found in cell extracts of P. chrysogenum, which indicates that lysine catabolism may proceed by reversal of the two last steps of the lysine biosynthetic pathway. In addition, a high lysine:2-ketoglutarate-6-aminotransferase activity, which converts lysine into piperideine-6-carboxylic acid, was found in cell extracts of P. chrysogenum. These results suggest that lysine is catabolized to 2-aminoadipic acid in P. chrysogenum by two different pathways. The relative contribution of lysine catabolism in providing 2-aminoadipic acid for penicillin production is discussed.  相似文献   

3.
Labelled saccharopine was synthesized and showed a low conversion to lysine in barley seedlings. The results indicate a role of saccharopine in either lysine biosynthesis or catabolism.  相似文献   

4.
LYSINE METABOLISM IN THE RAT BRAIN: THE PIPECOLIC ACID-FORMING PATHWAY   总被引:5,自引:4,他引:1  
Employing both the intraventricular and intraperitoneal injection techniques, 14C-l -lysine at non-overloading concentrations was found to be metabolized to l -14C-pipecolic acid at significantly high levels in the rat. Labeled pipecolic acid in the brain and liver was only found at rather low levels 24 h after intraperitoneal administration of 14C-l -lysine regardless of non-labeled lysine metabolite overload. A marked enhancement of pipecolic acid labeling was only found in the brain when 14C-l -lysine was intraventricularly administered to animals under various lysine metabolite overloads. While overloading doses of non-labeled saccharopine or α-aminoadipate did not significantly alter the labeling patterns of pipecolic acid in the brain, liver or urine when 14C-l -lysine was intraperitoneally administered, pipecolate overloading markedly reduced labeled pipecolic acid levels in the brain, liver and urine. These results indicate: pipecolic acid formation is subject to product inhibition, and saccharopine is not in the pathway of pipecolic acid synthesis from l -lysine. The labeling pattern of lysine metabolites was not significantly affected by the overloading injection of pipecolic acid when 14C-l -lysine was intraventricularly administered suggesting a blood-brain barrier for pipecolate. Besides 14C-pipecolic acid, labeled α-aminoadipic acid was also found at significant levels mostly in the brain. Labeled saccharopine was not detected in any tissues or urine samples analyzed. The 14C-l -lysine metabolic pattern of the newborn rats did not seem to be any different from the adult rats, i.e. labeled pipecolic acid was also detected in substantial quantities in the brain, liver and urine 5 h after injection. 14C-d -Lysine was mainly metabolized to l -14C-pipecolic acid through either route of administration. These experimental evidences indicate that the pipecolic acid-forming pathway is a significant route for lysine metabolism in the rat, and that the rat brain probably utilizes this pathway mainly for lysine metabolism. The present study also discusses the potential neurological significance of the pipecolic acid pathway in relation to the major lysine metabolic pathway (the saccharopine pathway).  相似文献   

5.
The biosynthesis of pipecolic acid from L-lysine in the fungal parasite, Rhizoctonia leguminicola has been reinvestigated. Pipecolate is then utilized to form the toxic octahydroindolizine alkaloids, slaframine and swainsonine. Incorporation studies of L-versus D-[U-14C]lysine into R. leguminicola metabolites confirmed earlier findings that L-lysine is the predominant substrate for pipecolate formation and D-lysine for alpha-N-acetyllysine (concerned in lysine catabolism). However [alpha-15N]lysine, not [epsilon-15N]lysine as previously reported, labeled pipecolate. Such findings implied that delta 1-piperideine-6-carboxylate, not delta 1-piperideine-2-carboxylate, was formed from lysine and was the immediate precursor of pipecolate. Evidence from cell-free enzyme systems established the following biosynthetic events: L-lysine A----saccharopine B----delta 1-piperideine-6-carboxylate C----pipecolate. Products of reactions A and C were identified from biological and chemical considerations. Reaction B was carried out by a previously undescribed flavin enzyme termed saccharopine oxidase. The product of reaction B, which reacted with p-dimethylaminobenzaldehyde, was reduced with Na-CNB2H3. Its NMR spectrum was identical with that of deuteriated pipecolate prepared from authentic delta 1-piperideine-6-carboxylate, but not from authentic delta 1-piperideine-2-carboxylate. Reaction B represents a branching of primary lysine metabolism from saccharopine to a secondary pathway leading to pipecolate and to octahydroindolizine alkaloids in R. leguminicola.  相似文献   

6.
The fungal parasite Rhizoctonia leguminicola produces two indolizidine alkaloids, slaframine and swainsonine, of physiological interest. These alkaloids are biosynthesized from pipecolic acid which in turn is derived from L-lysine in this fungus as shown in the accompanying paper (Wickwire, B.M., Harris, C.M., Harris, T.M., and Broquist, H.P. (1989) J. Biol. Chem. 265, 14742-14747): L-lysine----saccharopine----delta 1----piperideine-6- carboxylate----pipecolate. This paper concerns the discovery, purification, and properties of a flavoenzyme, termed saccharopine oxidase, which carries out the oxidative cleavage of saccharopine as follows: Saccharopine + O2----delta 1-piperidine-6-carboxylate + glutamate + H2O2 The enzyme was purified 2,000-fold to homogeneity (polyacrylamide gel electrophoresis) in 14% yield from R. leguminicola mycelia, and had a native molecular mass of about 45,000 daltons by gel filtration (fast protein liquid chromatography Superose). Evidence for the presence of a flavin in the enzyme was drawn from these considerations: (a) the enzyme, while oxidatively cleaving saccharopine, concomitantly reduces 2,6-dichlorophenolindophenol; (b) the purified enzyme has a fluorescence spectrum typical of flavins; and (c) the enzyme requires oxygen and produces hydrogen peroxide. Good correlation was shown with purified saccharopine oxidase between disappearance of saccharopine with the concomitant appearance of delta 1-piperideine-6-carboxylate plus glutamate. The enzyme has a pH optimum about 6 and a Km for saccharopine of 0.128 mM. The enzyme apparently exists in R. leguminicola to shunt saccharopine, a major lysine metabolite, into a secondary pathway of lysine metabolism leading to pipecolate and subsequently to slaframine and swainsonine.  相似文献   

7.
A partially purified preparation of alpha-aminoadipate reductase (EC 1.2.1.31) from Penicillium chrysogenum is competitively inhibited by lysine (Ki of 0.26 mM). Exogenous addition of 10 mM L-lysine to resting mycelia of P. chrysogenum increased the intracellular lysine pool concentration 2-fold, but decreased the incorporation of (6-14C)-alpha-aminoadipate into protein-bound lysine to a fifth. The distribution of radioactivity in the pathway metabolites alpha-aminoadipate, saccharopine and lysine was consistent with the assumption of a lysine sensitive enzyme step in vivo between alpha-aminoadipate and saccharopine. Hence lysine inhibition of alpha-aminoadipate reductase may be of physiologic importance.  相似文献   

8.
Two diastereoisomers of 4-carboxy-4-hydroxy-2-aminoadipic acid have been isolated from leaves and inflorescences of Caylusea abyssinica. Green parts of the plant also contain appreciable amounts of the two diastereoisomers of 4-hydroxy-4-methylglutamic acid, 3-(3-carboxyphenyl)alanine, (3-carboxyphenyl)glycine, 3-(3-carboxy-4-hydroxyphenyl)alanine, (3-carboxy-4-hydroxyphenyl)glycine and in low concentration 2-aminoadipic acid, saccharopine [(2S, 2′S)-N6-(2-glutaryl)lysine] and some γ-glutamyl peptides. The acidic amino acids were separated from other amino acids on an Ecteola ion exchange column with M pyridine as eluant.  相似文献   

9.
Wagner GJ 《Plant physiology》1981,67(3):591-593
l-[1-(14)C]Ascorbic acid was supplied to detached barley seedlings to determine the subcellular location of oxalic acid, one of its metabolic products. Intact vacuoles isolated from protoplasts of labeled leaves contained [(14)C]oxalic acid which accounted for about 70% of the intraprotoplast soluble oxalic acid. Tracer-labeled oxalate accounted for 36 and 72% of the (14)C associated with leaf vacuoles of seedlings labeled for 22 and 96 hours, respectively.  相似文献   

10.
Candida albicans LYS1-encoded saccharopine dehydrogenase (CaLys1p, SDH) catalyzes the final biosynthetic step (saccharopine to lysine + α-ketoglutarate) of the novel α-aminoadipate pathway for lysine synthesis in fungi. The reverse reaction catalyzed by lysine-α-ketoglutarate reductase (LKR) is used exclusively in animals and plants for the catabolism of excess lysine. The 1,146 bp C. albicans LYS1 ORF encodes a 382 amino acid SDH. In the present investigation, we have used E. coli-expressed recombinant C. albicans Lys1p for the determination of both forward and reverse SDH activities in vitro, compared the sequence identity of C. albicans Lys1p with other known SDHs and LKRs, performed extensive site-directed mutational analyses of conserved amino acid residues and analyzed the phylogenetic relationship of C. albicans Lys1p to other known SDHs and LKRs. We have identified 14 of the 68 amino acid substitutions as essential for C. albicans Lys1p SDH activity, including two highly conserved functional motifs, H93XXF96XH98 and G138XXXG142XXG145. These results provided new insight into the functional and phylogenetic characteristics of the distinct biosynthetic SDH in fungi and catabolic LKR in higher eukaryotes.  相似文献   

11.
Saccharopine and 2-aminoadipic acid have been identified in eleven plant species belonging to nine families. The amino acids have been isolated from green parts of the plants using ion-exchange chromatography and preparative high voltage electrophoresis, and in three cases the identification was supported by mass spectroscopy. Mild conditions were used during the isolation to avoid lactamization, and the contents of saccharopine and 2-aminoadipic acid have been determined semiquantitatively. The significance of the occurrence of the two amino acids with regard to lysine metabolism is briefly discussed.  相似文献   

12.
Ladaslav Sodek 《Phytochemistry》1976,15(12):1903-1906
Tracer studies with aspartic acid-[4-14C], alanine-[1-14C] acetate-[2-14C] and diaminopimelic acid-[1,(7)-14C] injected into the developing endosperm of maize revealed that the biosynthesis of lysine and other amino acids occurs in this organ. The data suggest that lysine is synthesized via the diaminopimelic acid pathway.  相似文献   

13.
Extracts of maize leaves catalyzed the interconversion of meso-diaminopimelic acid its L-isomer. Three observations support the existence of this epimerase activity: (i) detection of the reversible interconversion of L-diaminopimelic acid and meso-diaminopimelic acid by paper chromatography after incubation of either isomer with extract; (ii) formation of [14C]CO2 from L-[14C]diaminopimelic acid in an incubation mix containing meso-diaminopimelic acid decarboxylase; and (iii) inhibition of [14C]CO2 evolution from L-diaminopimelic acid by unlabeled meso-diaminopimelic acid. The demonstration of the diaminopimelic acid epimerase lends support to the occurrence in plants of the complete diaminopimelic acid pathway for biosynthesis of lysine as it occurs in Escherichia coli and most bacteria.  相似文献   

14.
The pattern of glucose catabolism in barley shoots during vernalizationwas examined using glucose-1-14C and glucose-6-14C. The pentosephosphate pathway became progressively predominant over theEmbden-Meyerhof-Parnas (EMP) pathway after germination in unvernalizedseedlings, while the EMP pathway maintained a superior positionduring the corresponding developmental stages in seedlings undervernalization. (Received August 20, 1973; )  相似文献   

15.
The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of α-aminoadipic semialdehyde (α-AASA). α-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either l-[α-15N]lysine or l-[ε-15N]lysine to explore the exact route of lysine degradation. l-[α-15N]lysine was catabolised into [15N]saccharopine, [15N]α-AASA, [15N]Δ1-piperideine-6-carboxylate, and surprisingly in [15N]pipecolic acid, whereas l-[ε-15N]lysine resulted only in the formation of [15N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Δ1-piperideine-6-carboxylate by the action of Δ1-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.  相似文献   

16.
Pipecolic acid serves as a precursor of the biosynthesis of the alkaloids slaframine and swainsonine (an antitumor agent) in some fungi. It is not known whether other fungi are able to synthesize pipecolic acid. Penicillium chrysogenum has a very active alpha-aminoadipic acid pathway that is used for the synthesis of this precursor of penicillin. The lys7 gene, encoding saccharopine reductase in P. chrysogenum, was target inactivated by the double-recombination method. Analysis of a disrupted strain (named P. chrysogenum SR1-) showed the presence of a mutant lys7 gene lacking about 1,000 bp in the 3'-end region. P. chrysogenum SR1- lacked saccharopine reductase activity, which was recovered after transformation of this mutant with the intact lys7 gene in an autonomously replicating plasmid. P. chrysogenum SR1- was a lysine auxotroph and accumulated piperideine-6-carboxylic acid. When mutant P. chrysogenum SR1- was grown with L-lysine as the sole nitrogen source and supplemented with DL-alpha-aminoadipic acid, a high level of pipecolic acid accumulated intracellularly. A comparison of strain SR1- with a lys2-defective mutant provided evidence showing that P. chrysogenum synthesizes pipecolic acid from alpha-aminoadipic acid and not from L-lysine catabolism.  相似文献   

17.
SYNOPSIS. Nine Crithidia spp., 2 Blastocrithidia spp., 3 Leptomonas spp. and 2 Trypanosoma spp. were tested for ability to synthesize methionine and lysine during growth. A prerequisite for methionine biosynthesis is an inordinately high level of folic acid (0.1 mg/100 ml) in the medium. Crithidia factor-type unconjugated pteridines cannot spare this requirement. Since the methionine-synthesis factor is still present after acid hydrolysis which destroys folic acid, the factor is either a breakdown product of folic acid or an impurity in the commercial product. All save C. fasciculata var. noelleri and C. from Syrphid could synthesize methionine from homocysteine thiolactone. None of the organisms synthesized lysine from α-aminoadipic acid (AAA), thus ruling out the existence of the AAA pathway for lysine synthesis in the Trypanosomatidae. Nine of the organisms synthesized lysine from a mixture of LL- and meso-α,e-diaminopimelic acid. Since both LL- and meso-DAP are intermediates in the biosynthesis of lysine by the DAP pathway (LL-DAP→meso-DAP→lysine) and since decarboxylation of either LL- or meso-DAP could result in formation of lysine, pure meso-DAP was tested and found active. Thus at least the terminal portion of the DAP pathway for lysine synthesis exists in these true animal cells. Statements about absence of ability to synthesize lysine in animal cells and consequent evolutionary interpretations will therefore require revision.  相似文献   

18.
The biosynthesis and catabolism of lysine in Penicillium chrysogenum is of great interest because these pathways provide 2-aminoadipic acid, a precursor of the tripeptide δ-L-2-aminoadipyl-L-cysteinyl-D-valine that is an intermediate in penicillin biosynthesis. In vivo conversion of labelled L-lysine into two different intermediates was demonstrated by HPLC analysis of the intracellular amino acid pool. L-lysine is catabolized to 2-aminoadipic acid by an ω-aminotransferase and to saccharopine by a lysine-2-ketoglutarate reductase. In lysine-containing medium both activities were expressed at high levels, but the ω-aminotransferase activity, in particular, decreased sharply when ammonium was used as the nitrogen source. The ω-aminotransferase was partially purified, and found to accept L-lysine, L-ornithine and, to a lesser extent, N-acetyl-L-lysine as amino-group donors. 2-Ketoglutarate, 2-ketoadipate and, to a lesser extent, pyruvate served as amino group acceptors. This pattern suggests that this enzyme, previously designated as a lysine-6-aminotransferase, is actually an ω-aminotransferase. When 2-ketoadipate is used as substrate, the reaction product is 2-aminoadipic acid, which contributes to the pool of this intermediate available for penicillin biosynthesis. The N-terminal end of the purified 45-kDa ω-aminotransferase was sequenced and was found to be similar to the corresponding segment of the OAT1 protein of Emericella (Aspergillus) nidulans. This information was used to clone the gene encoding this enzyme.  相似文献   

19.
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control.  相似文献   

20.
Shen Y  Zhang Y  Yang C  Lan Y  Liu L  Liu S  Chen Z  Ren G  Wan J 《Planta》2012,235(2):433-441
Aldehyde dehydrogenase proteins consist of a superfamily and the family 7 (ALDH7) is a typical group with highly conserved proteins across species. It catalyzes oxidation of α-aminoadipic semialdehyde (AASA) in lysine degradation, participates in protection against hyperosmotic stress, and detoxifies aldehydes in human; however, its function in plants has been much less documented. Here we reported a mutant with yellow-colored endosperm in rice, and showed that the yellow endosperm was caused by mutation of OsALDH7. OsALDH7 is expressed in all tissues detected, with the highest level in mature seeds. We found that oryzamutaic acid A accumulated during late seed development and after a year-long storage in the colored endosperm, whereas it was undetectable in the wild type endosperm. Moreover, lysine degradation was enhanced in yeast over-expressing OsALDH7 and as a result, content of lysine, glutamate and saccharopine was changed, suggesting a role of OsALDH7 in lysine catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号