首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cho MJ  Harper JE 《Plant physiology》1991,96(4):1277-1282
It was previously reported that the hypernodulating soybean (Glycine max [L.] Merr.) mutants, derived from the cultivar Williams, had higher root concentration of isoflavonoid compounds (daidzein, genistein, and coumestrol) than did Williams at 9 to 12 days after inoculation with Bradyrhizobium japonicum. These compounds are known inducers of nod genes in B. japonicum and may be involved in subsequent nodule development. The current study involving reciprocal grafts between NOD1-3 (hypernodulating mutant) and Williams showed that root isoflavonoid concentration and content was more than twofold greater when the shoot genotype was NOD1-3. When grafted, NOD1-3 shoots also induced hypernodulation on roots of both Williams and NOD1-3, while Williams shoots induced normal nodulation on both root genotypes. This shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by the shoot. In contrast, the nonnodulating characteristic of the NN5 mutant was strictly root controlled, based on reciprocal grafts. Delayed inoculation (7 days after planting) resulted in greater nodule numbers on both NOD1-3 and Williams, compared with a seed inoculation treatment. The nodulation pattern of grafted plants was independent of whether the shoot portion was derived from inoculated seed or uninoculated seed, when grafted at day 7 onto seedling roots derived from inoculated seed. This observation, coupled with the fact that no difference existed in nodule number of NOD1-3 and Williams until after 9 days from seed inoculation, indicated that if isoflavonoids play a role in differential nodulation of the hypernodulating mutant and the wild type, the effect is on advanced stages of nodule ontogeny, possibly related to autoregulation, rather than on initial infection stages.  相似文献   

2.
Cho MJ  Harper JE 《Plant physiology》1991,95(2):435-442
The isoflavones, daidzein and genistein, have been isolated and identified as the major inducers of nod genes of Bradyrhizobium japonicum. The common nod genes of rhizobia are in turn responsible for stimulating root hair curling and cortical root cell division, the earliest steps in the host response. This study evaluated whether there was a relationship between root isoflavonoid production and the hypernodulation phenotype of selected soybean (Glycine max [L.] Merr.) mutants. Three independently selected hypernodulating soybean mutants (NOD1-3, NOD2-4, and NOD3-7) and a nonnodulating mutant (NN5) were compared with the Williams parent for isoflavonoid concentrations. High performance liquid chromatographic analyses of soybean root extracts showed that all lines increased in daidzein, genistein, and coumestrol concentrations throughout the 12-day growth period after transplanting of both inoculated and noninoculated plants; transplanting and inoculation were done 6 days after planting. No significant differences were detected in the concentration of these compounds among the three noninoculated hypernodulating mutants and the Williams parent. In response to inoculation, the three hypernodulating mutants had higher isoflavonoid concentrations than did the Williams control at 9 to 12 days after inoculation when grown at 0 millimolar N level. However, the inoculated nonnodulating mutant also had higher isoflavonoid concentrations than did Williams. N application [urea, (NH4)2SO4 and NO3] decreased the concentration of all three isoflavonoid compounds in all soybean lines. Application of NO3 was most inhibitory to isoflavonoid concentrations, and inhibition by NO3 was concentration dependent. These results are consistent with a conclusion that differential NO3 inhibition of nodulation may be partially due to changes in isoflavonoid levels, although the similar response of the nonnodulating mutant brings this conclusion into question. Alternatively, the nodulation control in the NN5 mutant may be due to factors totally unrelated to isoflavonoids, leaving open the possibility that isoflavonoids play a role in differential nodulation of lines genetically competent to nodulate.  相似文献   

3.
Two strains of Bradyrhizobium japonicum were evaluated with five commercial cultivars of soybean (Clark, Crauford, Davis, Centaur, and Nessen) and one hypernodulating mutant NOD1-3. The hypernodulating NOD1-3 produced 30–50 times the number of nodules of commercial cultivars either inoculated with B. japonicum strain USDA 123 or RCR 3409. Grafting of NOD1-3 shoots to Clark and Davis roots induced hypernodulation on roots of Clark and Davis but did not enhance nodulation when grafted onto the roots of Crauford, Centaur, and Nessen. In contrast, the shoots of Clark, Davis, Centaur and Nessen significantly inhibited nodule formation on the root of NOD1-3. However, Crauford shoots did not alter nodule formation on the roots of NOD1-3 as compared with self-grafts of NOD1-3. It appears that the shoot of NOD1-3 has the ability to alter autoregulatory control of nodulation of Clark and Davis cultivars, but not of Crauford, Centaur and Nessen. The results suggest that the regulation of nodulation in soybean cultivars Clark and Davis is controlled by the shoot factors, while the Crauford was root controlled. Reciprocal grafts between NOD1-3 and Centaur or Nessen indicate that both shoot and root factors are involved in regulation of nodulation. The results suggested that the regulation of nodulation did not depend on bradyrhizobial strains. The shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by shoot. Application of daidzein significantly enhanced the nodulation and nitrogenase activity of soybean cv. Clark. Root control of restricted nodulation of soybean cv. Centaur did not respond to the addition of daidzein in nutrient solution indicating that this character is not related to isoflavonoids. Therefore, autoregulation in Clark and Centaur plants may be separate events in legume–rhizobia symbiosis and regulated by different kinds of signals.  相似文献   

4.
Isoflavonoids (daidzein, genistein, and coumestrol) are involved in induction of nod genes in Bradyrhizobium japonicum and may be involved in nodule development as well. Abscisic acid (ABA) may also impact nodulation since ABA is reportedly involved in isoflavonoid synthesis. The current study was conducted to evaluate whether ABA plays a role in differential nodulation of a hypernodulated soybean (Glycine max L. Merr.) mutant and the Williams parent. Exogenous ABA application resulted in a decrease in nodule number and weight in both lines. Isoflavonoid concentrations were also markedly decreased in response to ABA application in both inoculated and noninoculated soybean roots. The inoculation treatment itself resulted in a marked increase in isoflavonoid concentrations of NOD1-3, regardless of ABA levels, while only slight increases occurred in Williams. The nodule numbers of both soybean lines across several ABA concentration treatments were highly correlated with the concentration of all three isoflavonoids. However, differences in internal levels of ABA between lines were not detected when grown in the absence of external ABA additions. It is concluded that differential nodule expression between the wild type and the hypernodulated mutant is not likely due to differential ABA synthesis.  相似文献   

5.
Sheng C  Harper JE 《Plant physiology》1997,113(3):825-831
Grafting studies involving Williams 82 (normally nodulating) and NOD1-3 (hypernodulating) soybean (Glycine max [L.] Merr.) lines and Lablab purpureus were used to evaluate the effect of shoot and root on nodulation control and plant growth. A single- or double-wedge graft technique, with superimposed partial defoliation, was used to separate signal control from a photosynthate supply effect. Grafting of hypernodulated soybean shoots to roots of Williams 82 or L. purpureus resulted in increased nodule numbers. Grafting of two shoots to one root enhanced root growth in both soybean genotypes, whereas the nodule number was a function of shoot genotype but not of the photosynthetic area. In double-shoot, single-root-grafted plants, removing trifoliolate leaves from either Williams 82 or NOD1-3 shoots decreased root and shoot dry matter, attributable to decreased photosynthetic source. Concurrently, Williams 82 shoot defoliation increased the nodule number, whereas NOD1-3 shoot defoliation decreased the nodule number on both soybean and L. purpureus roots. It was concluded that (a) soybean leaves are the dominant site of autoregulatory signal production, which controls the nodule number; (b) soybean and L. purpureus have a common, translocatable, autoregulatory control signal; (c) seedling vegetative growth and nodule number are independently controlled; and (d) two signals, inhibitor and promoter, may be involved in controlling legume nodule numbers.  相似文献   

6.
Two strains of Bradyrhizobium japonicum wereevaluated with five commercial cultivars of soybean(Clark, Crauford, Davis, Centaur, and Nessen) and onehypernodulating mutant NOD1-3. The hypernodulatingNOD1-3 produced 30–50 times more nodules thancommercial cultivars either inoculated with B.japonicum strain USDA 123 or RCR 3409. The currentexperiments were extended to determine if therestricted nodulation of commercial cultivars could be overcome by grafting them to a hypernodulated shoot (NOD1-3). Grafting of NOD1-3 shoots to Clark and Davis roots induced hypernodulation on roots of Clark and Davis but did not enhance nodulation when grafted onto the roots of Crauford, Centaur, and Nessen. The shoots of Clark, Davis, Centaur and Nessen significantlyinhibited nodule formation on the root of NOD1-3,while Crauford shoots did not alter nodule formationon the roots of NOD1-3 as compared with self-grafts ofNOD1-3. It appears that the shoot of NOD1-3 has theability to alter autoregulatory control of nodulationof Clark and Davis cultivars, but did not withCrauford, Centaur and Nessen. The results suggestedthat the regulation of nodulation in soybean cultivarsClark and Davis is controlled by the shoot factors,while the Crauford was root controlled.Reciprocal-grafts between NOD1-3 and Centaur or Nessenindicate that both shoot and root factors involved inregulation of nodulation and the regulation ofnodulation did not depend on bradyrhizobial strains. Isoflavonoid analyses from extracts of grafted plantsshowed that NOD1-3 shoots had markedly higher rootisoflavonoid concentrations in roots of both Clark andNOD1-3. The shoot control of hypernodulation may becausally related to differential root isoflavonoidlevels, which are also controlled by the shoot. Thecurrent work was extended to investigate the effect ofapplication of an isoflavonoid (daidzein) on nodulationand nitrogen fixation of soybean cultivars Clark andCentaur as well as in vitro growth of Bradyrhizobium japonicum. Application of theisoflavonoid (daidzein) significantly enhanced thenodulation and nitrogenase activity of Clark but notof Centaur indicating that this character is notrelated to isoflavonoids. Therefore, autoregulationin Clark and Centaur plants may be separate events inlegume-rhizobia symbiosis and regulated by differentkinds of signals. Addition of daidzein to yeastmannitol broth medium promoted the growth of B.japonicum strain USDA 123 and RCR 3409. It seemsthat this compound is able to help the nodulation ofsoybean cv Clark by a Bradyrhizobium strain. Understanding the signaling pathways between rhizobiaand their host plants may allow modifications of thisinteraction to improve symbiotic performance.  相似文献   

7.
A split-root technique was applied to soybean, Glycine max (L.) Merr. cv. Lee 68, to characterize the nature of the nodulation suppression by race 1 of the soybean cyst nematode (SCN), Heterodera glycines. Root-halves of each split-root plant were inoculated with Rhizobium japonicum, and one root-half only was inoculated with various numbers of SCN eggs. Nodulation (indicated by nodule number, nodule weights, and ratio of nodule weight to root weight) and nitrogen-fixing capacity (indicated by rate of acetylene reduction) were systemically and variously suppressed on both root-halves of the split-root plant 5 weeks after half-root inoculation with 12,500 SCN eggs. Inoculation with 500 eggs caused this suppression only on the SCN-infected (+NE) root-half; nodulation on the companion uninfected (-NE) root-half was stimulated slightly. The +NE root-halves inoculated with 5,000 eggs were excised at 2-week intervals; nodulation on the remaining -NE root-halves was not different from that of the noninoculated control when measured 6 weeks after the SCN inoculation. Thus, the systemic suppression of nodulation was reversible upon the removal of the SCN. Similarly, application of various levels of KNO₃ to the -NE root-halves of the split-root plant did not alleviate the suppressed nodulation on the companion +NE root-halves, even though plant growth was much improved at certain levels of nitrogen (125 μg N/g soil). This indicated that the localized suppression of nodulation by SCN was caused by factors in addition to poor plant growth.  相似文献   

8.
The influence of seedling age at the time of inoculation on the regulation of nodule number in soybean (Glycine max [L.] Merr.) was examined in cv. Williams 82 and its hypernodulating mutant NOD1-3. Nodulation was evaluated on plants grown in plastic growth pouches or in vermiculite in 50- or 500-ml glass containers in growth chamber studies. Seeds or seedlings were inoculated once with Bradyrhizobium japonicum strain USDA 110 (10k cells seedling?1) between 0 and 15 days after sowing at 3- or 5-day intervals and were grown for 21 days after inoculation. Nodule number plant?1 was similar across inoculation times in plants grown in growth pouches, but was significantly greater when inoculation was delayed and plants were grown in vermiculite in 500-ml containers. Plant culture in vermiculite in 50- or 500-ml containers confirmed the suppressive effect of restricted space for root growth on nodulation. Inoculation with 105 or 109 USDA 110 cells revealed that nodulation was inhibited by a high inoculum dose. There was a large increase in nodule number plant?1 when plants were transferred from a restricted rooting environment (growth pouch culture) to a nonrestricted rooting environment (2-1 hydroponic pots). Autoregulation was also examined in split-root assemblies of plants in 500-ml containers of vermiculite. Controls involved concurrent inoculation of both root halves at 0. 4 or 8 days after transplant. Treatments involved time-separated inoculations of root halves with the primary and secondary inoculations being separated by 4 days. Plants were harvested at 21 days after inoculation. Williams 82 exhibited autoregulation of nodule number on the root half receiving delayed inoculation, regardless of plant age at the time of primary inoculation. Total nodule number plant?1 invariably increased with later inoculation times. In contrast. NOD1 - 3 exhibited little, if any, autoregulation of nodule number. It was concluded that although Williams 82 exhibits autoregulation of nodule number and NODI - 3 does not, there was no finite limit to nodule number in either line since any delay in inoculation resulted in formation of a greater nodule number on both lines if root growth was not restricted. Nodule number in Williams 82 and NODI - 3 appears to be a function of infection sites (root size) at the time of inoculation and of subsequent plant growth.  相似文献   

9.
Wu S  Harper JE 《Plant physiology》1990,92(4):1142-1147
It was previously reported that three soybean (Glycine max [L.] Merr.) nodulation mutants (NOD1-3, NOD2-4, and NOD3-7) were partially tolerant to nitrate when nitrate was supplied simultaneously with inoculation at the time of transplanting. The current study evaluated the effect of short-term nitrate treatment on nitrogenase activity (C2H2 reduction per plant and per nodule weight) and on relative abundance of ureides when nitrate application was delayed until plants were 3 weeks old and nodules were fully developed. Nitrogenase activity of the mutants was similar to that of Williams after an initial 3-week growth period, prior to nitrate treatment. Application of 5 millimolar nitrate resulted in greater inhibition of nitrogenase activity in Williams than in the three mutants. NOD1-3 was most tolerant of nitrate among the mutants tested and showed the highest relative abundance of ureides. Although C2H2 reduction activity per plant for NOD1-3 was higher than for Williams in the presence of nitrate, C2H2 reduction activity per gram of nodules was lower for NOD1-3 than for Williams in the presence and absence of nitrate. Compared to Williams, NOD1-3 had higher nodule ureide concentration and had similar glutamine synthetase activity in nodule tissue, indicating its nodules have normal nitrogen assimilation pathways. Nitrate application resulted in ureide accumulation in nodule tissue as well as in all plant parts assayed. Unexpectedly, nitrate treatment also increased the rate of ureide degradative capacity of leaves in both NOD1-3 and Williams. The data confirmed that nitrogenase activity of the selected nodulation mutants was more, but still only partially, tolerant of nitrate compared with the Williams parent.  相似文献   

10.
11.
The nodulation characteristics of wild-type Bradyrhizobium japonicum USDA 110 and mutant strain HS111 were examined. Mutant strain HS111 exhibits a delayed-nodulation phenotype, a result of its inability to initiate successful nodulation promptly following inoculation of the soybean root. Previously, we showed that the defect in initiation of infection leading to subsequent nodulation which is found in HS111 can be phenotypically reversed by pretreatment with soybean root exudate or soybean seed lectin. This effect is not seen after pretreatment with root exudates and lectins obtained from other plant species. Treatment of strain HS111 with as little as 10 soybean seed lectin molecules per bacterium (3.3 X 10 (-12) M) resulted in enhancement of nodule formation. Pretreatment of wild-type B. japonicum USDA 110 with soybean root exudate or seed lectin increased nodule numbers twofold on 6-week-old plants. Wild-type strain USDA 110 cells inoculated at 10(4) cells per seedling exhibited a delay in initiation of infection leading to subsequent nodulation. Wild-type cells pretreated in soybean root exudates or seed lectin did not exhibit a delay in nodulation at this cell concentration. Mutant strain HS111 pretreated in seed lectin for 0 or 1 h, followed by washing with the hapten D-galactose to remove the lectin, exhibited a delay in initiation of nodulation. Phenotypic reversal of the delayed-nodulation phenotype exhibited by strain HS111 was seen if incubation was continued for an additional 71 h in plant nutrient solution following 1 h of lectin pretreatment. Reversal of the delayed-nodulation phenotype of HS111 through lectin pretreatment was prevented by chloramphenicol or rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The nodulation characteristics of wild-type Bradyrhizobium japonicum USDA 110 and mutant strain HS111 were examined. Mutant strain HS111 exhibits a delayed-nodulation phenotype, a result of its inability to initiate successful nodulation promptly following inoculation of the soybean root. Previously, we showed that the defect in initiation of infection leading to subsequent nodulation which is found in HS111 can be phenotypically reversed by pretreatment with soybean root exudate or soybean seed lectin. This effect is not seen after pretreatment with root exudates and lectins obtained from other plant species. Treatment of strain HS111 with as little as 10 soybean seed lectin molecules per bacterium (3.3 X 10 (-12) M) resulted in enhancement of nodule formation. Pretreatment of wild-type B. japonicum USDA 110 with soybean root exudate or seed lectin increased nodule numbers twofold on 6-week-old plants. Wild-type strain USDA 110 cells inoculated at 10(4) cells per seedling exhibited a delay in initiation of infection leading to subsequent nodulation. Wild-type cells pretreated in soybean root exudates or seed lectin did not exhibit a delay in nodulation at this cell concentration. Mutant strain HS111 pretreated in seed lectin for 0 or 1 h, followed by washing with the hapten D-galactose to remove the lectin, exhibited a delay in initiation of nodulation. Phenotypic reversal of the delayed-nodulation phenotype exhibited by strain HS111 was seen if incubation was continued for an additional 71 h in plant nutrient solution following 1 h of lectin pretreatment. Reversal of the delayed-nodulation phenotype of HS111 through lectin pretreatment was prevented by chloramphenicol or rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Wild-type soybean (Glycine max [L] Merr. cv Bragg) and a nitrate-tolerant supernodulating mutant (nts382) were grown in split root systems to investigate the involvement of the autoregulation response and the effect of timing of inoculation on nodule suppression. In Bragg, nodulation of the root portion receiving the delayed inoculation was suppressed nearly 100% by a 7-day prior inoculation of the other root portion with Bradyrhizobium japonicum strain USDA 110. Significant suppression was also observed after a 24-hour delay in inoculation. Mutant nts382 in the presence of a low nitrate level (0.5 millimolar) showed little, if any, systemic suppression. Root fresh weights of individual root portions were similar for both wild type and nts382 mutant. When nts382 was grown in the absence of nitrate, a 7-day delay in inoculation resulted in only 30% suppression of nodulation and a significant difference in root fresh weight between the two sides, with the delayed inoculated side always being smaller. Nodulation tests on split roots of nts382, nts1116, and wild-type cultivars Bragg, Williams 82, and Clark demonstrated a difference in their systemic suppression ability. These observations indicate that (a) autoregulation deficiencies in mutant nts382 result in a reduction of systemic suppression of nodulation, (b) some suppression is detectable after 24 hours with a delayed inoculation, (c) the presence of low nitrate affects the degree of suppression and the root growth, and (d) soybean genotypes differ in their ability to express this systemic suppression.  相似文献   

14.
15.
Sato  Takashi  Onoma  Noriyasu  Fujikake  Hiroyuki  Ohtake  Norikuni  Sueyoshi  Kuni  Ohyama  Takuji 《Plant and Soil》2001,237(1):129-135
Soybean nodules contain four major leghemoglobin (Lb) components, Lba, Lbc1, Lbc2 and Lbc3. A sensitive and selective method for quantitative analysis of the four Lb components was devised with capillary isoelectric focusing (CIEF). The changes in the concentrations of four Lb components in nodules during the initial stages of development were compared between hypernodulating soybean mutant NOD1–3 and its parent cv. Williams. The hydroponically cultivated soybean plants were periodically sampled. All the visible nodules were collected from the roots, and then the four Lb components in the largest nodules were analyzed with the CIEF method. In NOD1–3 Lbs were initially detected at 19 days after sowing (DAS), a few days earlier than in Williams at 22 DAS. The Lbcs (Lbc1, Lbc2 and Lbc3) were the main component at the earliest nodule growth stage, and the relative proportion of Lba increased with nodule growth in both NOD1–3 and Williams. This result is in agreement with previous observation, and the CIEF method is considered to be useful for Lb components analysis to define their function and gene expression.  相似文献   

16.
Serratia proteamaculans 1-102 (1-102) promotes soybean-bradyrhizobia nodulation and growth, but the mechanism is unknown. After adding isoflavonoid inducers to 1-102 culture, an active peak with a retention time of about 105 min in the HPLC fractionation was isolated using a bioassay based on the stimulation of soybean seed germination. The plant growth-promoting activity of this material was compared with 1-102 culture (cells) and supernatant under greenhouse conditions. The activator was applied to roots in 83, 830 and 8300 HPLC microvolts (microV) per seedling when plants were inoculated with bradyrhizobia or sprayed onto the leaves in same concentrations at 20 d after inoculation. The root-applied activator, especially at 1 ml of 830 microV per seedling, enhanced soybean nodulation and growth at the same level as 1-102 culture under both optimal and sub-optimal root zone temperatures. Thus, this activator stimulating soybean seed germination is also responsible for the plant growth-promoting activity of 1-102 culture. However, when sprayed onto the leaves, the activator did not increase growth and in higher concentrations decreased average single leaf area. The results suggest that this inducible activator might be a lipo-chitooligosaccharide (LCO) analogue. LCOs act as rhizobia-to-legume signals stimulating root nodule formation. The activator could provide additional 'signal', increasing in the signal quality (the signal-to-noise ratio, SNR) of the plant-rhizobia signal exchange process.  相似文献   

17.
A feedback mechanism which involves sensing of change in phloem N concentration has been proposed to control nodulation and dinitrogen fixation in the presence of external combined N. Whether this control is in response to a change in total N or in some specific signal compound(s) is not known. In the present study we reevaluated the hypothesis that control of nodulation and N2 fixation involves sensing of change in tissue N composition and attempted to identify potential signal molecule(s) involved. Two soybean (Glycine max [L.] Merr.) genotypes (Williams 82 and NOD1-3) differing in nodule number and tolerance to nitrate were germinated in sand trays. Seven-day-old seedlings were inoculated with a solution of Bradyrhizobium japonicum and grown for 28 days in growth chambers, using a hydroponic system with limited N supply to promote nodulation. Half of 28-day-old plants were treated with 15 mM NO3?, then control and treated plants were sampled at the onset of nitrogenase inhibition (24 h following NO3?, treatment) for evaluation of nitrogenase activity and tissue concentration of total N and of each individual free amino acid. Phenylisothiocyanate-(PITC) amino acid derivatives were separated and quantified using HPLC. The decline in nitrogenase activity following the short-term nitrate treatment was associated with a dramatic asparagine concentration increase in the shoot and an increase in nodule aspartate and glutamate in both genotypes. Asparagine concentration in the shoot increased 35 times from a barely detectable level of 95 to 3 327 nmol g?1 fresh weight in Williams 82, and more than tripled from 509 to 1 753 nmol g?1 fresh weight in NOD1-3. Increase in levels of free Asn and in total free amino acids in the shoot following the short-term nitrate treatment was more pronounced in Williams 82 than in its partially nitrate-tolerant mutant NOD1-3. These results indicate that the feedback control of nodule activity may involve sensing changes in shoot asparagine levels and/or products of its metabolism (aspartate and glutamate) in the nodule. These results also indicate that partial-nitrate tolerance of nodulation in the hypernodulated NOD1-3 mutant is associated with a lesser change in tissue N following nitrate treatment.  相似文献   

18.
To understand the autoregulation of nodulation (AON) system, in which leguminous plants control the nodule number, we examined the details of the characteristics of hypernodulation soybean mutants NOD1-3 and NOD3-7. A microscopic study showed that NOD1-3 and NOD3-7 produced small-size leaves due to the smaller number of leaf cells, compared with the Williams parent. These phenotypes were not affected by inoculation with bradyrhizobia or nitrate supply. The AON signaling might be related to the control system of leaf cell proliferation. This hypothesis was strongly supported by the finding that activation of AON in wild types by inoculation leads to an increase in the cell number of leaves.  相似文献   

19.
Effect of salinity on nodule formation by soybean   总被引:12,自引:0,他引:12       下载免费PDF全文
A split-root growth system was employed to evaluate the effect of NaCl on nodule formation by soybean (Glycine max L. Merr. cv Davis). By applying the salinity stress and rhizobial inoculum to only one-half the root system, the effects of salinity on shoot growth were eliminated in the nodulation process. Rhizobium colonization of inoculated root surfaces was not affected by the salt treatments (0.0, 26.6, 53.2, and 79.9 millimolar NaCl). While shoot dry weight remained unaffected by the treatments, total shoot N declined from 1.26 grams N per pot at 0.0 millimolar NaCl to 0.44 grams N per pot at 79.9 millimolar NaCl. The concentration of N in the shoot decreased from 3.75% N (0.0 millimolar NaCl) to 1.26% N at 79.9 millimolar NaCl. The decrease in shoot N was attributed to a sharp reduction in nodule number and dry weight. Nodule number and weight were reduced by approximately 50% at 26.6 millimolar NaCl, and by more than 90% at 53.2 and 79.9 millimolar NaCl. Nodule development, as evidenced by the average weight of a nodule, was not as greatly affected by salt as was nodule number. Total nitrogenase activity (C2H2 reduction) decreased proportionally in relation to nodule number and dry weight. Specific nitrogenase activity, however, was less affected by salinity and was not depressed significantly until 79.9 millimolar NaCl. In a second experiment, isolates of Rhizobium japonicum from nodules formed at 79.9 millimolar NaCl did not increase nodulation of roots under salt stress compared to nodule isolates from normal media (0.0 millimolar NaCl). Salt was applied (53.2 millimolar NaCl) to half root systems at 0, 4, 12, and 96 hours from inoculation in a third experiment. By delaying the application of salt for 12 hours, an increase in nodule number, nodule weight, and shoot N was observed. Nodule formation in the 12- and 96-hour treatments was, however, lower than the control. The early steps in nodule initiation are, therefore, extremely sensitive to even low concentrations of NaCl. The sensitivity is not related to rhizobial survival and is probably due to the salt sensitivity of root infection sites.  相似文献   

20.
Reciprocal grafting experiments done using soybean plant introduction genotypes indicated that restriction of nodulation by Bradyrhizobium japonicum is determined by the genotype of the root and is dependent on plant growth temperature. Microscopic analyses indicated that the soybean plant introduction genotypes restrict nodulation of B. japonicum at symbiotic stages which occur both before and after the formation of nodule primordia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号