首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP phosphohydrolase (ATPase) activity of a corn (Zea mays L., WF9 × Mo17) root plasma membrane fraction was enriched almost 2-fold by selective extraction with 0.1% (w/v) deoxycholate. The detergent treatment solubilized about 30% of the total membrane protein and some ATP hydrolyzing activity that was not K+-stimulated, but the major portion of the ATPase activity could be pelleted with membranes. The properties of the ATPase associated with the detergent-extracted plasma membrane fraction were similar to those for the ATPase of the untreated plasma membrane fraction with respect to substrate specificity, pH optimum, kinetics with MgATP, ion stimulation, and inhibitor sensitivity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed only minor differences in protein composition resulting from the detergent treatment.

The plasma membrane fraction from corn roots contained an endogenous protein kinase activity. This was shown by the time course of phosphate incorporation and by the labeling of a number of protein bands on SDS-polyacrylamide gel electrophoresis. The deoxycholate treatment removed measurable protein kinase activity and allowed the demonstration of a rapidly turning over covalent phosphorylated intermediate associated with the detergent-extracted plasma membrane fraction. The phosphorylated intermediate was present as a 100,000 dalton polypeptide and may represent the catalytic subunit of the plasma membrane K+-ATPase.

  相似文献   

2.
The Ca2+/Mg2+ ATPase, which is activated by millimolar concentrations of Ca2+ or Mg2+, was solubilized from rat heart plasma membrane by employing lysophosphatidylcholine, CHAPS, Nal, EDTA and Tris-HCI at pH 7.4. The enzyme was purified by sucrose density gradient, Affi-Gel Blue column and Sepharose 6B column chromatography. The purified enzyme was seen as a single peptide band in the sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular weight of about 90,000. The apparent molecular weight of the holoenzyme as determined under non-dissociating conditions by gel filtration on Sepharose 6B column was about 180,000 indicating two subunits. The enzyme was insensitive to ouabain, verapamil, vanadate, oligomycin, N,N-dicyclohexylcarbodiimide and NaN3, but was markedly inhibited by 20 µM gramacidin S and 50 µM trifluoperazine. Analysis of the purified Ca2+/Mg2+ ATPase revealed the presence of 17 amino acids where leucine, glutamic acid and aspartic acid were the major components and histidine, cysteine and methionine were the minor components. The purified enzyme was associated with 19.7 µmol phospholipid/mg protein which was 60 times higher than the phospholipid content in plasma membrane. The cholesterol content in the purified enzyme preparation was 0.75 µmol/mg protein and this represented an 8-fold enrichment over plasma membrane. The glycoprotein nature of the enzyme was evident from the positive periodic acid-Schiff staining of the purified Cau2+/MgATPase in the sodium dodecyl sulfate polyacrylamide gel. The polysaccharide content of the enzyme was enriched 8-fold over plasma membrane; neurominidase treatment decreased the polysaccharide content. Concanavalin A prevented the ATP-dependent inactivation of the purified Ca2+/Mg2+ ATPase and was found to bind to the purified enzyme with a KD of 576 nM and Bmax of 4.52 nmol/mg protein. The results indicate that Ca2+/Mg2+ ATPase is a glycoprotein and contains a large amount of lipids.  相似文献   

3.
The N,N′-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase of pea (Pisum sativum L.) cotyledon mitochondria was solubilized from submitochondrial particle membranes with sodium cholate and ammonium sulfate. Ammonium sulfate precipitation of the enzyme resulted in an increase in specific activity. At between 38% and 45% saturated ammonium sulfate, 20% of the ATPase activity was precipitated, with a specific activity 4 to 5 times higher than that of the crude enzyme. The precipitate was highly sensitive to DCCD.

The properties of the ammonium sulfate preparation were investigated. It contained levels of cytochrome and NADH dehydrogenase contamination comparable to those of the highly purified F0F1 preparations from animal tissue. The high degree of purification was corroborated by sodium dodecyl sulfate electrophoresis.

  相似文献   

4.
Squalene synthetase, an integral membrane protein and the first committed enzyme for sterol biosynthesis, was solubilized and partially purified from tobacco (Nicotiana tabacum) cell suspension cultures. Tobacco microsomes were prepared and the enzyme was solubilized from the lipid bilayer using a two-step procedure. Microsomes were initially treated with concentrations of octyl-β-d-thioglucopyranoside and glycodeoxycholate below their critical micelle concentration, 4.5 and 1.1 millimolar, respectively, to remove loosely associated proteins. Complete solubilization of the squalene synthetase enzyme activity was achieved after a second treatment at detergent concentrations above or at their critical micelle concentration, 18 and 2.2 millimolar, respectively. The detergent-solubilized enzyme was further purified by a combination of ultrafiltration, gel permeation, and Fast Protein Liquid Chromatography anion exchange. A 60-fold purification and 20% recovery of the enzyme activity was achieved. The partially purified squalene synthetase protein was used to generate polyclonal antibodies from mice that efficiently inhibited synthetase activity in an in vitro assay. The apparent molecular mass of the squalene synthetase protein as determined by immunoblot analysis of the partially purified squalene synthetase protein separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 47 kilodaltons. The partially purified squalene synthetase activity was optimal at pH 6.0, exhibited a Km for farnesyl diphosphate of 9.5 micromolar, and preferred NADPH as a reductant rather than NADH.  相似文献   

5.
小麦根质膜H^+—ATPase的部分纯化   总被引:2,自引:0,他引:2  
以小麦(TriticumaestivumL.)根为材料,采用不连续蔗糖密度梯度离心法制备高纯度质膜微囊。质膜经TritonX100和KCl处理后,再用Zwitergent314增溶H+ATPase,最后用硫酸铵沉淀得到部分纯化的质膜H+ATPase。SDSPAGE结果表明,经过上述步骤纯化,分子量为94kD的膜蛋白组分得到富集;与质膜相比,其含量提高15.7倍。部分纯化的质膜H+ATPase可以水解ATP,受K+刺激,并被N,N′dicyclohexylcarbodimide(DCCD)抑制;ATP水解活力被Na3VO4抑制95%,但不被NaN3、NaNO3和Na2MoO4抑制。  相似文献   

6.
The Ca ATPase from rat liver plasma membranes has been recently characterized and partially purified in our laboratory and was shown to depend on a membrane-bound protein activator (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215). In the present study, we report that a factor derived from ammonium sulfate washings of rat liver plasma membranes inhibits the partially purified enzyme activity measured in the presence of activator. This factor is a protein as judged by its sensitivity to heat and trypsin. A molecular weight of 29,000 was determined by sucrose gradient centrifugation and gel chromatography. The action of the inhibitor is due to a decrease in the maximal velocity of the enzyme reaction and is reversed by an excess of the activator associated with the enzyme. An important point in the mode of action of this inhibitor is its absolute dependence on magnesium, which most probably explains the difficulty in detecting the plasma membrane Ca ATPase when MgCl2 is added to the assay medium.  相似文献   

7.
Partial purification of a tonoplast ATPase from corn coleoptiles   总被引:20,自引:13,他引:7       下载免费PDF全文
Mandala S  Taiz L 《Plant physiology》1985,78(2):327-333
The tonoplast ATPase from corn coleoptile membranes was solubilized using a two-step procedure consisting of a pretreatment with 0.15% (w/v) deoxycholate to remove 60% of the protein, and 40 millimolar octyl-glucoside to solubilize the ATPase. During ultracentrifugation, the solublized ATPase entered a linear sucrose gradient faster than the majority of the protein, resulting in an 11-fold purification over the initial specific activity. The partially purified ATPase was almost completely inhibited by KNO3 with an estimated Ki of 10 millimolar. The specific activity of the KNO3-sensitive ATPase was increased 29-fold during purification. N,N′-Dicyclohexylcarbodiimide also completely inhibited the ATPase with half-maximal effects at a concentration of 4 micromolar. Neither vanadate nor azide inhibited enzyme activity. The purified ATPase was stimulated by Cl and preferred Mg-ATP as substrate. Analysis of frations from the sucrose gradient by sodium dodecyl sulfate-polyacrylamide gel electrophoresis led to the identification of two major polypeptides at 72,000 and 62,000 daltons which were best correlated with ATPase activity. Several minor bands also appeared to copurify with enzyme activity, but were less consistent. Radiation inactivation experiments with intact membranes indicated that the functional molecular size of the tonoplast ATPase was nearly 400,000 daltons. This suggests that the ATPase is composed of several polypeptides, possibly including the 72,000- and 62,000-dalton proteins.  相似文献   

8.
Purified plasma membranes of Schizosaccharomyces pombe were obtained by precipitation at pH 5.2 of a crude particulate fraction, followed by differential centrifugations and isopycnic centrifugation in a discontinuous sucrose gradient. The specific activity of the Mg2+-requiring plasma membrane ATPase activity (EC 3.6.1.3) was enriched from 0.3 mumol min-1 x mg-1 of protein in the homogenate to 26 in the purified membranes. The optimal conditions for solubilization of the ATPase activity by lysolecithin were found to be: 2 mg/ml of lysolecithin, a lysolecithin to protein ratio of 8 at pH 7.5, and 15 degrees C in the presence of 1 mM ATP and 1 mM ethylenediaminetetraacetic acid. A 6- to 7-fold purification of the solubilized ATPase activity was obtained by centrifugation of the lysolecithin extract in sucrose gradient. Part of the ATPase activity which was inactivated during the centrifugation in the sucrose gradient could be restored by addition of a micellar solution of 50 microgram of lysolecithin/ml during the assay. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the purified enzyme showed only one band of Mr = 105,000 stained with Coomassie blue. Another ATPase component of apparent molecular weight lower than 10,000 was stained by periodic Schiff reagent but not colored by Coomassie blue. The purified enzyme was 85% inhibited by 50 micrometer N,N'-dicyclohexylcarbodiimide and 94% inhibited by 53 microgram of Dio-9/ml.  相似文献   

9.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

10.
Because nearly all structure/function studies on Na(+)/K(+)-ATPase have been done on enzymes prepared in the presence of SDS, we have studied previously unrecognized consequences of SDS interaction with the enzyme. When the purified membrane-bound kidney enzyme was solubilized with SDS or TDS concentrations just sufficient to cause complete solubilization, but not at concentrations severalfold higher, the enzyme retained quaternary structure, exhibiting alpha,alpha-, alpha,beta-, beta,beta-, and alpha,gamma-associations as detected by chemical cross-linking. The presence of solubilized oligomers was confirmed by sucrose density gradient centrifugation. This solubilized enzyme had no ATPase activity and was not phosphorylated by ATP, but it retained the ability to occlude Rb(+) and Na(+). This, and comparison of cross-linking patterns obtained with different reagents, suggested that the transmembrane domains of the enzyme are more resistant to SDS-induced unfolding than its other domains. These findings (a). indicate that the partially unfolded oligomer(s) retaining partial function is the intermediate in the SDS-induced denaturation of the native membrane enzyme having the minimum oligomeric structure of (alpha,beta,gamma)(2) and (b). suggest potential functions for Na(+)/K(+)-ATPase with intrinsically unfolded domains. Mixtures of solubilized/partially unfolded enzyme and membrane-bound enzyme exhibited cross-linking patterns and Na(+) occlusion capacities different from those of either enzyme species, suggesting that the two interact. Formation of the partially unfolded enzyme during standard purification procedure for the preparation of the membrane-bound enzyme was shown, indicating that it is necessary to ensure the separation of the partially unfolded enzyme from the membrane-bound enzyme to avoid the distortion of the properties of the latter.  相似文献   

11.
Vacuoles of yeast grown in peptone medium possessed high ATPase activity (up to 1 mumol X mg protein-1 X min-1). Membrane-bound and solubilized ATPase activities were insensitive to vanadate and azide, but were inhibited by NO-3 . K+ and cyclic AMP stimulated both membrane-bound and solubilized ATPase activities. Dio-9 activated the membrane form of vacuolar ATPase 1.5-2-fold and did not affect the solubilized enzyme. Solubilized and partially purified vacuolar ATPase was reconstituted with soy-bean phospholipids by a freeze-thaw procedure. ATPase activities in native vacuoles and proteoliposomes were stimulated effectively by Dio-9, the protonophore FCCP and ionophores valinomycin and nigericin. ATP-dependent H+ transport into proteoliposomes was also shown by quenching of ACMA fluorescence. Vacuolar and partially purified ATPase preparations possessed also GTPase activity. Unlike ATPase, however, GTPase was not incorporated as a proton pump into liposomes.  相似文献   

12.
The plasma membrane H+-ATPase (EC 3.6.1.35) was purified by washing red beet ( Beta vulgaris L.) plasma membranes with sodium deoxycholate and separating the ATPase, solubilized with lysophosphatidylcholine, by centrifugation in a glycerol gradient. The purified H+-ATPase had a sedimentation coefficient of about 8S. In the absence of exogenous protein substrates, the purified ATPase preparation did not present protein kinase activity. Compared with the H+-ATPase in the plasma membrane, the purified ATPase presented a higher affinity for adenosine 5'-triphosphate (ATP) and a lower sensitivity to the inhibitors vanadate and inorganic phosphate. These changes in the kinetics of the ATPase could also be observed by treating the membranes with lysophosphatidylcholine, without purifying the enzyme. These results can be explained assuming that lysophosphatidylcholine interacts with the ATPase altering its kinetics probably by stimulating the transformation from the inhibitor-binding conformation E2 into the ATP-binding conformation E1.  相似文献   

13.
Pig gastric microsomal (H+ + K+)-stimulated ATPase activity was nearly abolished within 10 min of digestion with phospholipase A2 at room temperature. The enzyme activity could be largely restored by a cytosolic activator protein partially purified from the gastric cells. The K+ sensitivity and turnover of 32P-labelled intermediates produced by the control and the activator-reconstituted microsomal (H+ + K+)-stimulated ATPase were closely similar but were widely different to those from treated membranes without activator reconstitution. The data suggest an essential requirement for the endogenous activator for gastric (H+ + K+)-stimulated ATPase function.  相似文献   

14.
Phosphorylated intermediate of the ATPase of plant plasma membranes   总被引:11,自引:0,他引:11  
A partially purified preparation of the plant plasma membrane ATPase was phosphorylated when incubated with [gamma-32P]ATP. The phosphoprotein formed has the characteristics of an enzyme intermediate because of its rapidity of phosphorylation and dephosphorylation. The sensitivity of the phosphoenzyme bond to alkaline pH and to hydroxylamine indicates that it is an acylphosphate. Both the ATPase activity and the phosphorylation of the enzyme exhibited an apparent Km value of 0.3 mM ATP. When the phosphorylated enzyme was analyzed by electrophoresis in sodium dodecyl sulfate, only one major band with a molecular weight of about 105,000 contained radioactivity. These results indicate that the plant plasma membrane ATPase has a subunit composition and reaction mechanism similar to the cation-pumping ATPases of animal and fungal plasma membranes.  相似文献   

15.
A Mg(2+)+Na(+)+K(+)-stimulated adenosine triphosphatase (ATPase) preparation was isolated from rat ventral prostate by flotation of microsomal membranes in high-density sucrose solutions. The reaction medium for optimum Na(+)+K(+)-stimulated ATPase activity was found to be: Na(+), 115mm; K(+), 7-10mm; Mg(2+), 3mm; ATP, 3mm; tris buffer, pH7.4 at 38 degrees , 20mm. The average DeltaP(i) (Mg(2+)+Na(+)+K(+) minus Mg(2+)+Na(+)) was 9mumoles/mg. of protein/hr., representing a 30% increase over the Mg(2+)+Na(+)-stimulated ATPase activity. At high concentrations, K(+) was inhibitory to the enzyme activity. Half-maximal inhibition of Na(+)+K(+)-stimulated ATPase activity was elicited by ouabain at 0.1mm. The preparation exhibited phosphatase activity towards ribonucleoside triphosphates other than ATP. However, stimulation of P(i) release by Na(+)+K(+) was observed only with ATP as substrate. The apparent K(m) for ATP for Na(+)+K(+)-stimulated activity was about 0.3x10(-3)m. Ca(2+) inhibited only the Na(+)+K(+)-stimulated ATPase activity. Mg(2+) could be replaced by Ca(2+) but then no Na(+)+K(+) stimulation of ATPase activity was noticed. The addition of testosterone or dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) in vitro at 0.1-10mum under a variety of experimental conditions did not significantly increase the Na(+)+K(+)-stimulated ATPase activity. The enzyme preparations from prostates of orchidectomized rats, however, exhibited a drastic decrease in the specific activity of Na(+)+K(+)-stimulated ATPase; these changes were prevented in the orchidectomized rats by injection of testosterone propionate.  相似文献   

16.
Heart sarcolemma has been shown to contain an ATPase hydrolizing system which is activated by millimolar concentrations of divalent cations such as Ca2+ or Mg2+. Although Ca2+-dependent ATPase is released upon treating sarcolemma with trypsin, a considerable amount of the divalent cation dependent ATPase activity was retained in the membrane. This divalent cation dependent ATPase was solubilized by sonication of the trypsin-treated dog heart sarcolemma with 1% Triton X-100. The solubilized enzyme was subjected to column chromatography on a Sepharose-6B column, followed by ion-exchange chromatography on a DEAE cellulose column. The enzyme preparation was found to be rather labile and thus the purity of the sample could not be accurately assessed. The solubilized ATPase preparations did not show any cross-reactivity with dog heart myosin antiserum or with Na+ + K+ ATPase antiserum. The enzyme was found to be insensitive to inhibitors such as ouabain, verapamil, oligomycin and vanadate. The enzyme preparation did not exhibit any Ca2+-stimulated Mg2+ dependent ATPase activity. Furthermore, the low affinity of the enzyme for Ca2– (Ka = 0.3 mM) rules out the possibility of its involvement in the Ca2+ pump mechanism located in the plasma membrane of the cardiac cell.  相似文献   

17.
A glycoprotein ATPase in cholinergic synaptic vesicles of Torpedo electric organ was solubilized with octa-ethylene glycol dodecyl ether detergent. Study of potential stabilizing factors identified crude brain phosphatidylserine, glycerol, dithiothreitol, and protease inhibitors as of value in maintaining activity. The ATPase was purified from the solubilized, stabilized material by glycerol density gradient band sedimentation velocity ultracentrifugation, and hydroxylapatite, wheat germ lectin affinity, and size exclusion chromatographies. The pure ATPase had a specific activity of about 37 mumol ATP hydrolyzed/min/mg protein. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified material typically exhibited three polypeptides of molecular masses 110, 104, and 98 kilodaltons (kDa) and a fourth diffuse polypeptide of 60 kDa. This composition suggests that the ATPase is a member of the P-type, or phosphointermediate-forming, family, but it was shown to be distinct from the ouabain-sensitive Na+,K+- and CA2+-stimulated Mg2+-ATPases. The purified vesicle enzyme was rapidly phosphorylated by [gamma-32P]ATP on about 14% of the subunits with molecular weights of 98,000-110,000. About 16% of the ATPase was phosphorylated in whole-vesicle ghosts in a manner consistent with formation of a phosphointermediate, thus confirming the P-type nature of this enzyme.  相似文献   

18.
To elucidate the regulation mechanisms for sarcolemmal Ca2(+)-pumping ATPase of vascular smooth muscle, the preparation of the membrane fraction of porcine aorta with which the enzyme activity could be analyzed was attempted. A Ca2(+)-activated, Mg2(+)-dependent ATPase [Ca2(+)+Mg2+)-ATPase) activity with high affinity for Ca2+ (Km = 79 +/- 18 nM) was found in a sarcolemma-enriched fraction obtained from digitonin-treated microsomes that possessed the essential properties of plasma membrane (PM) Ca2(+)-pumping ATPases, as determined for the erythrocyte and cardiac muscle enzymes. The activity was stimulated by calmodulin and inhibited by low concentrations of vanadate. Saponin had a stimulatory effect on it. The existence of the PM enzyme in the membrane fraction was substantiated by the Ca2(+)-dependent, hydroxylamine sensitive phosphorylation of a 130K protein, which could be selectively enhanced by LaCl3. The enzyme activity was potentiated by either cGMP or a purified G-kinase. Purified protein kinase C potentiated the enzyme activity. However, none of these agents stimulated the activity of the enzyme purified from microsomes by calmodulin affinity chromatography. The results suggest that the sarcolemmal Ca2(+)-pumping ATPase of vascular smooth muscle is regulated by these protein kinases not through phosphorylation of the enzyme itself but through phosphorylation of membrane components(s) other than the enzyme. Phosphatidylinositol phosphate was found to stimulate the enzyme, suggesting its role in mediation of the stimulatory effects of the protein kinases.  相似文献   

19.
1. Adenosine triphosphatase activities of dispersions prepared from bovine cerebral cortex that had been frozen, were greater than those of dispersions prepared from fresh tissue. The subcellular distribution of components of the dispersion was not altered by freezing the tissue and a microsomal fraction enriched in Na(+)+K(+)-stimulated adenosine triphosphatase activity was prepared. 2. The bovine cerebral microsomes were further treated with a 2m-sodium iodide reagent to obtain a particulate preparation with minimal Na(+)+K(+)-independent adenosine triphosphatase activity. Na(+)+K(+)-stimulated activity was increased by the sodium iodide treatment and this preparation was shown to be enriched in lipid constituents. 3. Density-gradient centrifugation of the sodium iodide treated preparation gave three main subfractions each containing approximately equal amounts of phospholipid and protein. Further exposure of the sodium iodide-treated preparation to the 2m-sodium iodide reagent altered the distribution of protein and phospholipid among the fractions obtained by density-gradient centrifugation. Dissociation of phospholipids from protein in the sodium iodide-treated preparation was brought about also by high concentrations of arginine. Concentrated solutions of arginine and sodium thiocyanate brought about dissociation of phospholipids from protein of the microsomal preparation. 4. Many amino acids were found to inhibit Na(+)+K(+)-stimulated adenosine triphosphatase activity when present in high concentrations. The inhibition was complex but resulted, in part at least, from diminished affinity for ATP and Na(+) in the presence of the amino acids. 5. A non-ionic detergent, Lubrol W, solubilized up to 40% of the enzyme activity of the sodium iodide-treated preparation together with 30% of the protein and phospholipid in the preparation. Protein was released from the sodium iodide-treated preparation by pancreatic elastase but Na(+)+K(+)-stimulated adenosine triphosphatase activity of the residue was diminished. Ultrasonic treatment of the sodium iodide-treated preparation failed to release a significant proportion of Na(+)+K(+)-stimulated adenosine triphosphatase activity into a form not deposited by ultracentrifugation.  相似文献   

20.
ATPase activity of the plasma membrane fraction from primary roots of corn (Zea mays L. WF9 x M14) was activated by Mg(2+) and further stimulated by monovalent cations (K(+) > Rb(+) > Cs(+) > Na(+) > Li(+)). K(+)-stimulated activity required Mg(2+) and was substrate-specific. Maximum ATPase activity in the presence of Mg(2+) and K(+) was at pH 6.5 and 40 C. Calcium and lanthanum (<0.5 mm) were inhibitors of ATPase, but only in the presence of Mg(2+). Oligomycin was not an inhibitor of the plasma membrane ATPase, whereas N,N'-dicyclohexylcarbodiimide was. Activity showed a simple Michaelis-Menten saturation with increasing ATP.Mg. The major effect of K(+) in stimulating ATPase activity was on maximum velocity. The kinetic data of K(+) stimulation were complex, but similar to the kinetics of short term K(+) influx in corn roots. Both K(+)-ATPase and K(+) influx kinetics met all criteria for negative cooperativity. The results provided further support for the concept that cation transport in plants is energized by ATP, and mediated by a cation-ATPase on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号