首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose tissue is an important site of steroid hormone biosynthesis, as type I 11β-hydroxysteroid dehydrogenase (HSD1), the enzyme responsible for the conversion of cortisone into cortisol and the P450 aromatase, the enzyme catalysing androgens aromatization into estrogens, are both expressed in human adipose tissue. In the present report, we have investigated the possibility that sex steroids and leptin could regulate these two enzymes in cultured preadipocytes from men and women intra-abdominal fat depots.

In women preadipocytes, human recombinant leptin down-regulates HSD1 mRNA expression (−58%) and P450 aromatase activity (−26%). Conversely, leptin up-regulates the HSD1 (2.4-fold) and the P450 aromatase (1.6-fold) mRNA expression in men preadipocytes. In women preadipocytes, 17β-estradiol strongly stimulates HSD1 mRNA expression (10-fold) and, in contrast, decreases by half the P450 aromatase expression. In men, 17β-estradiol has no influence on HSD1 expression but up-regulates P450 aromatase mRNA expression (2.4-fold). Finally, androgens increase by a factor of 2.5–5 the mRNA expression of both enzymes in men.

These findings suggest that sex steroids and leptin either increase or decrease local cortisol and estrogens productions in men or in women preadipocytes, respectively. They also indicate that steroid metabolism in adipose tissue is controlled by a coordinated regulation of P450 aromatase and HSD1 expressions. Finally, the important sex-specific differences described herein may also contribute to explain the sexual dimorphism of body fat distribution in humans.  相似文献   


2.
Although androgens and estrogens both play significant roles in the prostate, it is their combined action – and specifically their balance – that is critically important in maintaining prostate health and tissue homeostasis in adulthood. In men, serum testosterone levels drop by about 35% between the ages of 21 and 85 while estradiol levels remain constant or increase. This changing androgen:estrogen (T:E) ratio has been implicated in the development of benign and malignant prostate disease.The production of estrogens from androgens is mediated by the aromatase enzyme, the aberrant expression of which plays a critical role in the development of malignancy in a number of tissues. The normal prostate expresses aromatase within the stroma, while there is an induction of epithelial expression in malignancy with altered promoter utilisation. This may ultimately lead to an altered T:E ratio that is associated with the development of disease.The role of estrogen and the T:E balance in the prostate is further complicated by the differential actions of both estrogen receptors, α and β. Stimulation of ERα leads to aberrant proliferation, inflammation and pre-malignant pathology; whereas activation of ERβ appears to have beneficial effects regarding cellular proliferation and a putative protective role against carcinogenesis.Overall, these data reveal that homeostasis in the normal prostate involves a finely tuned balance between androgens and estrogens. This has identified estrogen, in addition to androgens, as integral to maintaining normal prostate health, but also as an important mediator of prostate disease.  相似文献   

3.
In adult male primates, estrogens play a role in both gonadotropin feedback and sexual behavior. Inhibition of aromatization in intact male monkeys acutely elevates serum levels of luteinizing hormone, an effect mediated, at least partially, within the brain. High levels of aromatase (CYP19) are present in the monkey brain and regulated by androgens in regions thought to be involved in the central regulation of reproduction. Androgens regulate aromatase pretranslationally and androgen receptor activation is correlated with the induction of aromatase activity. Aromatase and androgen receptor mRNAs display both unique and overlapping distributions within the hypothalamus and limbic system suggesting that androgens and androgen-derived estrogens regulate complimentary and interacting genes within many neural networks. Long-term castrated monkeys, like men, exhibit an estrogen-dependent neural deficit that could be an underlying cause of the insensitivity to testosterone that develops in states of chronic androgen deficiency. Future studies of in situ estrogen formation in brain in the primate model are important for understanding the importance of aromatase not only for reproduction, but also for neural functions such as memory and cognition that appear to be modulated by estrogens.  相似文献   

4.
The increase in circulating estrogen concentrations that follows injection of Escherichia coli endotoxin (Endo) may be due to increased aromatase activity. We have therefore analysed the effect of the aromatase inhibitor, 4 hydroxyandrostenedione (4OHA) on the steroid hormone response of male rats, particularly the dramatic increase in estrogens and decrease in androgens, induced by Endo. The concentrations of corticosterone (B), progesterone (P4), 17 alpha hydroxyprogesterone (17 alpha OHP4), androstenedione (delta 4), testosterone (T), estrone (E1) and estradiol (E2) were determined 2 hours after injection of increasing doses of 4OHA with and without Endo. The increase in serum estrogen concentrations and drop in serum androgen levels in response to Endo were blocked by a single dose of 4OHA. The effect of 4OHA appeared to be dose dependent. Low doses (30 mg/kg and 50 mg/kg) induced significant changes in the estrogen and androgen responses, but the high dose (100 mg/kg) blocked all changes in sex steroids induced by Endo. 4OHA did not alter the Endo-induced changes in other steroids.  相似文献   

5.
Androgen aromatase was found to also be estrogen 2-hydroxylase. The substrate specificity among androgens and estrogens and multiplicity of aromatase reactions were further studied. Through purification of human placental microsomal cytochrome P-450 by monoclonal antibody-based immunoaffinity chromatography and gradient elution on hydroxyapatite, aromatase and estradiol 2-hydroxylase activities were co-purified into a single band cytochrome P-450 with approx. 600-fold increase of both specific activities, while other cytochrome P-450 enzyme activities found in the microsomes were completely eliminated. The purified P-450 showed Mr of 55 kDa, specific heme content of 12.9 ± 2.6 nmol·mg−1 (±SD, N = 4), reconstituted aromatase activity of 111 ± 19 nmol·min−1·mmg−1 and estradiol 2-hydroxylase activity of 5.85 ± 1.23 nmol·min−1·mg−1. We found no evidence for the existence of catechol estrogen synthetase without concomitant aromatase activity. The identity of the P-450 for the two different hormone synthetases was further confirmed by analysis of the two activities in the stable expression system in Chinese hamster ovarian cells transfected with human placental aromatase cDNA, pH β-Aro. Kinetic analysis of estradiol 2-hydroxylation by the purified and reconstituted aromatase P-450 in 0.1 M phosphate buffer (pH 7.6) showed Km of 1.58 μM and Vmax of 8.9 nmol·min−1·mg−1. A significant shift of the optimum pH and Vmax, but not the Km, for placental estrogen 2-hydroxylase was observed between microsomal and purified preparations. Testosterone and androstenedione competitively inhibited estradiol 2-hydroxylation, and estrone and estradiol competitively inhibited aromatization of both testosterone and androstenedione. Estrone and estradiol showed Ki of 4.8 and 7.3 μM, respectively, for testosterone aromatization, and 5.0 and 8.1 μM, respectively, for androstenedione aromatization. Androstenedione and testosterone showed Ki of 0.32 and 0.61 μM, respectively, for estradiol 2-hydroxylation. Our studies showed that aromatase P-450 functions as estrogen 2-hydroxylase as well as androgen 19-, 1β-,and 2β-hydroxylase and aromatase. The results indicate that placental aromatase is responsible for the highly elevated levels of the catechol estrogen and 19-hydroxyandrogen during pregnancy. These results also indicate that the active site structure holds the steroid ssubstrates to face their β-side of the A-ring to the heme, tilted in such a way as to make the 2-position of estrogens and 19-, 1-, and 2-positions of androgens available for monooxygenation.  相似文献   

6.
Aromatase   总被引:1,自引:0,他引:1  
Aromatase catalyzes the conversion of androgens to estrogens through a series of monooxygenations to achieve the 19-desmolation and aromatization of the neutral steroid ring-A structure. We have separated two forms of aromatase, a major (P2a) and a minor (P3) form, from human term placenta through solubilization and chromatography. Partially purified aromatase in each form was immunoaffinity chromatographed to give a single band (SDS-PAGE) cytochrome P-450 of 55 kDa, utilizing a mouse monoclonal anti-human placental aromatase cytochrome P-450 IgGi (MAb3-2C2) which is capable of suppressing placental aromatase activity. The purified cytochrome P-450 showed specific aromatase activity of 25-30 nmol/min per mg with Km of 20-30 nM for androstenedione on reconstitution with NADPH-cyt P-450 reductase and dilauroyl L-alpha-phosphatidylcholine. This one step represents a higher than 100-fold purification with maintenance of the same Km. The stability analysis showed a half-life of more than 5 yr for solubilized aromatase and 2 months for the aromatase cytochrome P-450 on storage at -90 degrees C. Contrary to the recent claim that estrogen biosynthesis by reconstituted human placental cytochrome P-450 is by trans-diaxial 1 alpha,2 beta-hydrogen elimination, all of our partially purified forms and reconstituted aromatase synthesized estrogens by cis-1 beta, 2 beta-hydrogen elimination. Use of purified aromatase and [19-3H3, 4-14C]androstenedione led us to discover a metabolic switching by aromatase to 2 beta-hydroxylation of androgen. Results of the MAb3-2C2 suppression of aromatase activity in different species and tissues including human, baboons, horses, cows, pigs and rats indicated the presence of various isozymes of aromatase.  相似文献   

7.
As part of a study on hormones and bone density in peri-menopausal women, metabolic clearance rates (MCR), and interconversions of androgens and estrogens and the peripheral aromatization of androgens were measured twice 2 yr apart. Measurements of clearance rates and interconversions were made from blood samples obtained during constant infusions of [3H]androgens and [14C]estrogens. Measurements of peripheral aromatization were made from the estrogen glucuronides in a pooled 4-day urine collection timed from the start of the infusions. The women were divided into 3 groups: Group A (n = 15) were having menstrual cycles throughout the 2 yr interval; Group B (n = 11) were having menstrual cycles at the time of Study 1 but had been amenorrheic for at least 1 yr at the time of Study 2; Group C (n = 28) were amenorrheic for at least 1 yr at the time of Study 1 and had remained amenorrheic through Study 2. The MCRs for testosterone, androstenedione, estrone and estradiol were not different for Study 1 and Study 2 in any of the groups. The interconversions of the androgens were similar in both studies for all groups. The conversion of estrone to estradiol decreased in Group A, otherwise the interconversions of the estrogens did not vary between the studies for the other groups. The peripheral aromatization of androstenedione, but not of testosterone, was significantly greater at study 2 compared to Study 1 for all groups. We conclude that the MCRs and interconversions of androgens and of estrogens are stable over time, but that the peripheral aromatization of androstenedione increases over a 2 yr interval. This increase may be menopausal and/or age related.  相似文献   

8.
9.
Human aromatase is the cytochrome P450 catalyzing the conversion of androgens into estrogens in a three steps reaction essential to maintain steroid hormones balance. Here we report the capture and spectroscopic characterization of its compound I (Cpd I), the main reactive species in cytochromes P450. The typical spectroscopic transitions indicating the formation of Cpd I are detected within 0.8 s when mixing aromatase with meta‐chloroperoxybenzoic acid. The estrogen product is obtained from the same reaction mixture, demonstrating the involvement of Cpd I in aromatization reaction. Site‐directed mutagenesis is applied to the acid‐alcohol pair D309 and T310 and to R192, predicted to be part of the proton relay network. Mutants D309N and R192Q do not lead to Cpd I with an associated loss of activity, confirming that these residues are involved in proton delivery for Cpd I generation. Cpd I is captured for T310A mutant and shows 2.9‐ and 4.4‐fold faster rates of formation and decay, respectively, compared to wild‐type (WT). However, its activity is lower than the WT and a larger amount of H2O2 is produced during catalysis, indicating that T310 has an essential role in proton gating for generation of Cpd 0 and Cpd I and for their stabilization. The data provide new evidences on the role of threonine belonging to the conserved “acid‐alcohol” pair and known to be crucial for oxygen activation in cytochromes P450.  相似文献   

10.
In order to better understand the function of aromatase, we carried out kinetic analyses to asses the ability of natural estrogens, estrone (E1), estradiol (E2), 16-OHE1, and estriol (E3), to inhibit aromatization. Human placental microsomes (50 μg protein) were incubated for 5 min at 37°C with [1β-3H]testosterone (1.24 × 103 dpm 3H/ng, 35–150 nM) or [1β-3H,4-14C]androstenedione (3.05 × 103 dpm 3H/ng, 3H/14C = 19.3, 7–65 nM) as substrate in the presence of NADPH, with and without natural estrogens as putative inhibitors. Aromatase activity was assessed by tritium released to water from the 1β-position of the substrates. Natural estrogens showed competitive product inhibition against androgen aromatization. The Ki of E1, E2, 16-OHE1, and E3 for testosterone aromatization was 1.5, 2.2, 95, and 162 μM, respectively, where the Km of aromatase was 61.8 ± 2.0 nM (n = 5) for testosterone. The Ki of E1, E2, 16-OHE1, and E3 for androstenedione aromatization was 10.6, 5.5, 252, and 1182 μM, respectively, where the Km of aromatase was 35.4 ± 4.1 nM (n = 4) for androstenedione. These results show that estrogens inhibit the process of andrigen aromatization and indicate that natural estrogens regulate their own synthesis by the product inhibition mechanism in vivo. Since natural estrogens bind to the active site of human placental aromatase P-450 complex as competitive inhibitors, natural estrogens might be further metabolized by aromatase. This suggests that human placental estrogen 2-hydroxylase activity is catalyzed by the active site of aromatase cytochrome P-450 and also agrees with the fact that the level of catecholestrogens in maternal plasma increases during pregnancy. The relative affinities and concentration of androgens and estrogens would control estrogen and catecholestrogen biosynthesis by aromatase.  相似文献   

11.
Although ovaries serve as the primary source of estrogen for pre-menopausal women, after menopause estrogen biosynthesis from circulating precursors occurs in peripheral tissues by the action of several enzymes, 17beta-hydroxysteroid dehydrogenase 1 (17beta-HSD1), aromatase and estrogen sulfatase. In the breast, both normal and tumoral tissues have been shown to be capable of synthesizing estrogens, and this local estrogen production can be implicated in the development of breast tumors. In these tissues, estradiol (E(2)) can be synthesized by three pathways: (1) estrone sulfatase transforms estrogen sulfates into bioactive estrogens, (2) 17beta-HSD1 converts estrone (E(1)) into E(2), (3) aromatase which converts androgens into estrogens is also present and contributes to the in situ synthesis of active estrogens but to a far lesser extent than estrone sulfatase. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization. Breast tissue also possesses the estrogen sulfotransferase involved in the conversion of estrogens into their sulfates that are biologically inactive. In the present review, we summarized the action of the 19-nor-progestin nomegestrol acetate (NOMAC) on the sulfatase, 17beta-HSD1 and sulfotransferase activities in the hormone-dependent MCF-7 and T47-D human breast cancer cell lines. Using physiological doses of substrates NOMAC blocks very significantly the conversion of E(1)S to E(2). It inhibits the transformation of E(1) to E(2). NOMAC has a stimulatory effect on sulfotransferase activity in both cell lines, with a strong stimulating effect at low doses but only a weak effect at high concentrations. The effects on the three enzymes are always stronger in the progesterone-receptor rich T47-D cell line as compared with the MCF-7 cell line. Besides, no effect is found for NOMAC on the transformation of androstenedione to E(1) in the aromatase-rich choriocarcinoma cell line JEG-3. In conclusion, the inhibitory effect provoked by NOMAC on the enzymes involved in the biosynthesis of E(2) (sulfatase and 17HSD pathways) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive E(1)S, can open attractive perspectives for future clinical trials.  相似文献   

12.
Testosterone (T) at physiological levels can induce precocious vaginal opening without advancing the time of first ovulation. The present experiments were undertaken to test the hypothesis that the vaginal epithelium has the ability to aromatize androgens to estrogens. Using standardized conditions, we estimated aromatase activity using both 3H2O-release from [1 beta-3H]T and thin-layer chromatographic (TLC) characterization of estrogen formed after incubations with [1,2,6,7-3H] testosterone. Vaginal aromatase-like activity, as measured by the 3H2O-release assay, increased between the juvenile and peripubertal phases of development and remained elevated throughout puberty. In contrast, ovarian aromatase increased markedly during the early proestrus (EP) and late (first) proestrus (LP) phases of puberty but declined after the first ovulation. Vaginal aromatase-like activity was induced in vivo by either stimulation of ovarian steroidogenesis with pregnant mare's serum gonadotropin (PMSG), or by producing EP levels of serum T via testosterone-containing Silastic capsules. 4-Hydroxy androstenedione, a potent aromatase inhibitor, decreased both vaginal and ovarian aromatase activity in vitro in a concentration-dependent manner. Although the principal product of ovarian aromatase derived from [1,2,6,7-3H] T was identified as estradiol (E2), the identity of the vaginal estrogen product could not be firmly established. The vaginal metabolite comigrated with 16-keto-E2 in two TLC systems before and one TLC system after acetylation but failed to recrystallize as 16-keto-E2 diacetate and failed to co-elute with 16-keto-E2 diacetate on high performance liquid chromatography. This vaginal metabolite does not correspond to any of 13 steroids tested, including 2-hydroxy-E2, and it does not represent a 5 alpha-reduced metabolite of T.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The variations in oestrogen levels which occur in men with septic shock were determined and analysed in terms of the changes seen in the levels of other steroid hormones of testicular and adrenal origin. The concentrations of the hormones, oestrone (E1), oestradiol (E2), testosterone (T), delta 4-androstenedione (delta 4), cortisol (F) and progesterone (P4) were determined by radioimmunoassay. The serum levels of cholesterol, triglycerides, phospholipids and non-esterified fatty acids (NEFAs) were also determined. Two groups of male septic shock patients were studied within the first 24 h following the admission to the Intensive Care Unit. Group I (n = 24) patients died. Group II (n = 22) patients recovered. Both groups were compared to a control group (n = 44) of healthy men. In group I patients, serum E1 levels were 3900 +/- 900 pmol/l, 12-fold higher than controls (296 +/- 22 pmol/l) [P less than 0.001], serum E2 levels were 880 +/- 170 pmol/l, 6-fold above control levels (158 +/- 30 pmol/l) [P less than 0.001] and serum T levels were 1.7 +/- 0.3 nmol/l, 11-fold lower than in controls (18.7 +/- 1.9 nmol/l) [P less than 0.001]. Serum P4 and F levels were slightly increased (P less than 0.05) and delta 4 androstenedione levels were unchanged. Groups II serum estrogen levels (814 +/- 350 pmol/l) [P less than 0.01] were higher than controls and serum T levels were 2-3 times less than control levels (5.5 +/- 2 nmol/l) [P less than 0.01]. The group II serum P4, F and delta 4 androstenedione levels did not differ from control levels. The levels of cholesterol, triglycerides, phospholipids and NEFAs were all decreased to similar, significant, degrees in both groups of shock patients. The dramatic increase in E1 levels associated with the decrease in T suggests an adrenal-testicular relationship with possible potentiation of aromatization of adrenal or testicular androgens in men in septic shock. The determination of serum E1 and T during septic shock in men could form the basis for prognostic estimations of septic shock severity and for a new therapeutic approach to shock.  相似文献   

14.
A single i.m. injection of testosterone (750 mg of testosterone bexahydrobenzoate) or i.v. injection of human chorionic gonadotrophin (hCG) (10,000 IU) was given to geldings and stallions. Levels of unconjugated and conjugated (after solvolysis) androgens and estrogens were measured in blood and urine samples taken daily from the day of injection (D0) to the tenth day post-injection (D10). In the stallion, both treatments resulted in a sharp increase of plasma estrogens, which peaked one day before the androgen levels. Our results confirmed the testicular localization of a potent aromatase, which is able to aromatize androgens from endogenous as well as exogenous origin into conjugated estrogens. The very similar patterns of estrogen increase following testosterone or hCG administration suggest that the estrogen rise induced by hCG results at least partly from increased availability of testosterone. The abrupt drop in plasma estrogen levels cannot be explained by a lack of substrate, since two successive androgen injections did not succeed in maintaining the high estrogen levels. Since estrogens were unable to inhibit the aromatase activity in vitro, the drop in estrogen levels suggests a down-regulation of the aromatase synthesis.  相似文献   

15.
16.
Ghosh D  Jiang W  Lo J  Egbuta C 《Steroids》2011,76(8):753-758
Aromatase (CYP19A1) is an integral membrane enzyme that catalyzes the removal of the 19-methyl group and aromatization of the A-ring of androgens. All human estrogens are synthesized from their androgenic precursors by this unique cytochrome P450. The crystal structure of active aromatase purified from human placenta has recently been determined in complex with its natural substrate androstenedione in the high-spin ferric state of heme. Hydrogen bond forming interactions and tight packing hydrophobic side chains closely complement puckering of the steroid backbone, thereby providing the molecular basis for the androgenic specificity of aromatase. In the crystal, aromatase molecules are linked by a head-to-tail intermolecular interaction via a surface loop between helix D and helix E of one aromatase molecule that penetrates the heme-proximal cavity of the neighboring, crystallographically related molecule, thus forming in tandem a polymeric aromatase chain. This intermolecular interaction is similar to the aromatase-cytochrome P450 reductase coupling and is driven by electrostatics between the negative potential surface of the D-E loop region and the positively charged heme-proximal cavity. This loop-to-proximal site link in aromatase is rather unique—there are only a few of examples of somewhat similar intermolecular interactions in the entire P450 structure database. Furthermore, the amino acids involved in the intermolecular contact appear to be specific for aromatase. Higher order organization of aromatase monomers may have implications in lipid integration and catalysis.  相似文献   

17.
18.
Aromatase in the normal breast and breast cancer   总被引:9,自引:0,他引:9  
Adipose tissue and muscle constitute the larger proportion of body mass, and therefore aromatization in these tissues is the major source of circulating estrogens in postmenopausal women. Although plasma estrogen concentrations are very low, levels in breast cancers from postmenopausal patients are reported to be 10-fold higher than in plasma and normal tissue. Whereas studies on aromatase activity in the tumor suggest that estrogen may be produced locally, the significance of this contribution has been questioned. Using immunocytochemistry (ICC) to an anti-aromatase antibody, a relatively strong immunoreaction was detected in tumor epithelial cells as well as in the terminal ductal lobular units (TDLUs) of the normal breast. Aromatase expression was detected in the cytoplasm of tumor epithelial cells and the surrounding stromal cells of over 50% of tumors in a series of 19 breast cancers. In situ hybridization (ISH) to aromatase mRNA confirmed the immunocytochemical result that the epithelial cells are the primary site of estrogen synthesis in the breast and breast cancers. In the 10 tumors which showed immunoreaction to aromatase, the average aromatase activity measured in cryosections was 286.5 ± 18.6 fmol estrogen/mg protein/h (SE), whereas in nine tumors with weak aromatase immunoreaction, the enzyme activity was 154.7 ± 19.3 fmol estrogen/mg protein/h (P < 0.05) (SE). The functional significance of tumor aromatase and locally produced estrogens on the growth of tumors was suggested by the correlation between aromatase activity and proliferating cell nuclear antigen (PCNA), a marker of cell proliferation (P < 0.005). Although intratumoral aromatase activity did not correlate with steroid receptors significantly, there was a trend for estrogen receptor (ER)-positive tumors to express aromatase. In addition, proliferation ([3H]-thymidine incorporation into DNA) during histoculture, was increased by both estradiol and testosterone in tumors with high aromatase activity. Our results suggest that some tumors synthesize sufficient estrogen to stimulate their proliferation. It may thus be important to inhibit tumor aromatase as well as to reduce circulating levels of estrogen for effective breast cancer treatment.  相似文献   

19.
20.
Estrogens--male hormones?   总被引:3,自引:0,他引:3  
The cytochrome P450 aromatase is the terminal enzyme responsible for the irreversible transformation of androgens into estrogens; it is present in the endoplasmic reticulum membrane of cells and rather ubiquitous in its localization. The aromatase gene is unique in humans and its expression is regulated in a cell-specific manner via the alternative use of various promoters located in the first exon I of the CYP19 gene. The aromatase gene expression and its translation into a fully active protein have been shown in most of the testicular cells including germ cells as well as in the epithelial cells of the epididymis in mammals. Together with the widespread distribution of estrogen receptors (ERalpha and ERbeta) in the genital tract of the male, a physiological role for estrogens in the regulation of mammalian reproductive functions including the regulation of gonadotropin feedback, is now well recognized. Moreover, in men the aromatase deficiency is associated with severe bone maturation problems, alterations of lipid and sugar metabolism and sterility; but conversely an excess of estrogens is responsible for the impairment of spermatogenesis. In addition, estrogens play an important role in the control of osteoporosis and of atherosclerosis, especially in elderly men. Consequently, estradiol seems to be a critical factor not only for normal reproduction (at least for maturation and survival of germ cells) but also for various physiological processes and thus, estrogens should be now considered as "male hormones".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号