首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

2.
Brains from piglets were dissected and a block of tissue including the substantia nigra, globus pallidus, and entopeduncular nucleus was homogenized and then fractionated on discontinuous Percoll gradients. Ligand-binding assays using (-)-[3H]nicotine and [3H]quinuclidinyl benzilate served to delineate fractions containing nicotinic and muscarinic acetylcholine receptors. In this system endopeptidase-24.11 exhibited a biphasic distribution, consistent with its presence on both pre- and postsynaptic membranes. Peptidyl dipeptidase A (angiotensin converting enzyme; ACE) was associated with membrane fractions containing muscarinic receptors. An immunoblot of these fractions with an affinity-purified polyclonal antibody to ACE revealed only the neuronal form of ACE (Mr 170,000), the endothelial form (Mr 180,000) being undetectable. Electron microscopic immunoperoxidase staining of the substantia nigra, with an affinity-purified antibody to endopeptidase-24.11 at the preembedding stage, showed this antigen to be confined to the plasma membranes of boutons, axons, and some dendrites. Both pre- and postsynaptic membranes were stained, and occasionally other regions of the dendritic membrane were positive. No staining of synaptic vesicles within the boutons was observed. Thus, two independent approaches indicate that endopeptidase-24.11 is present on both pre- and postsynaptic membranes in the pig substantia nigra. The subcellular fractionation suggests that neuronal ACE is confined to dendritic membranes.  相似文献   

3.
Plasma membrane-associated ATPase obtained from cauliflower (Brassica oleraceae L.) florets isolated and assayed by several different procedures was stimulated 150 to 400% by K+. In contrast, winter wheat (Triticum aestivum L. cv. Kharkov 22 MC) shoot and root ATPase obtained by the same methods exhibited only 10 to 25% stimulation by K+. The level of K+-stimulation of the wheat enzyme was not significantly increased by purifying the crude microsomal membrane fraction using sucrose density gradients. ATPase associated with density gradient-purified cauliflower membranes was inhibited by Ca2+, high ATP concentration in the presence of low Mg2+, and by several metabolic inhibitors. In contrast, the wheat enzyme was largely unaffected by all of these treatments. The plasma membranes of intact wheat and cauliflower cells gave a positive reaction with the plasma membrane-specific, phosphotungstic acid-chromic acid stain (PACP). A high proportion of the cauliflower membrane vesicles in the putative plasma membrane-enriched fraction stained with PACP, whereas only a small proportion of the wheat membrane vesicles reacted positively with PACP. These results indicate that a plasma membrane-enriched fraction has been isolated successfully from cauliflower floret tissue, but that none of the procedures used effectively separate plasma membranes from homogenates of wheat shoots and roots.  相似文献   

4.
The protozoan parasite Entamoeba histolytica is an ancient eukaryotic cell that shows morphologically atypical organelles and differs metabolically from higher eukaryotic cells. The aim of this study was to determine the subcellular localization of ameba NAD+-dependent alcohol dehydrogenase (ADH2). The enzyme activity was present in soluble and mainly in particulate material whose density was 1.105 in a sucrose gradient. By differential centrifugation, most of the ADH activity sedimented at 160,000 g (160,000-g pellet), similar to the Escherichia coli polymeric ADHE. In the Coomassie staining of the 160,000-g pellet analyzed by electrophoresis, a 96-kDa protein was more prominent than in other fractions; this band was recognized by antibodies against Lactococcus lactis ADHE. By gold labeling, the antibodies recognized the granular material that mainly constitutes the 160,000-g pellet and a material that sedimented along with the internal membrane vesicles. By negative staining, the 160,000-g fraction showed helical rodlike structures with an average length of 103 nm; almost no membrane vesicles were observed in this pellet. In internal membrane fractions, no rodlike structures were found, but protomerlike round structures were observed. These results indicate that the main amebic NAD+-dependent ADH2 activity is naturally organized as rodlike helical particles, similar to bacterial ADHE. Detection of ADH2 in membrane fractions might be explained by cosedimentation of the multimeric ADH during membrane purification.  相似文献   

5.
The selective staining of plasma membranes of plants and porcine spermatozoa given by a mixture consisting of 1% phosphotungstic acid in 10% chromic acid (PACP) applied following periodic acid destaining of glutaraldehyde-osmium tetroxide-fixed electron microscope sections is reduced or eliminated by prior extraction of the tissues with lipid solvents, including ethanol. The ethanol-soluble fraction of sperm contains constituents which restore the PACP-staining reaction when added to ethanol-extracted and lyophilized sperm. Analysis of the ethanol extracts by thin layer chromatography revealed two major components which reacted with both phosphotungstic acid (PTA) and alpha-naphthol detection reagents. These PTA-positive constituents were concentrated in plasma membranes of sperm; components with similar mobilities were found in fractions of plasma membranes from plants. Addition of the PTA-positive constituents from either sperm or plants to extracted and lyophilized sperm restored the PACP staining. The findings are interpreted to mean that one or more low molecular weight constituents (saccharides or glycolipids), rather than glycoproteins, concentrated in plaslma membranes are responsible for the unique PACP staining in both plants and porcine sperm.  相似文献   

6.
Abstract— Two membrane fractions were obtained from electric organ tissue of the electric eel by sucrose gradient centrifugation of tissue homogenates. Electron microscopic examination showed that both fractions contained mainly vesicular structures (microsacs). Both the light and heavy fractions had a-bungarotoxin-binding capacity and Na+-K+ ATPase activity, while only the light fraction had AChE activity. The polypeptide patterns of vesicles derived from both the light and heavy fractions were examined by SDS-polyacrylamide gel electrophoresis and found to be very similar. The ratio of protein to phospholipid in the light vesicles was much lower than in the heavy vesicles, but the relative amounts of individual phospholipids in the two fractions were similar. A marked difference in the permeability of the light and heavy vesicles was observed by measuring efflux of both [14C]sucrose and 22Na+, and also by monitoring volume changes induced by changing the osmotic strength of the medium. All three methods showed the heavy vesicles to be much more permeable than the light ones. Only the light vesicles displayed increased sodium efflux in the presence of carbamylcholine. The AChE in the light fraction does not appear to be membrane-bound, but is rather a soluble enzyme, detached from the membrane during homogenization, which migrates on the gradient similarly to that of the light vesicles. This is supported by the fact that the bulk of the AChE is readily removed by washing the vesicles. Moreover, under the conditions employed in our sucrose gradient separations,‘native’14 S + 18 S AChE exists in the form of aggregates which migrate very similarly to the major peak of AChE activity of tissue homogenates. Separated innervated and non-innervated surfaces of isolated electroplax were obtained by microdissection. α-Bungarotoxin-binding capacity was observed only in the innervated membrane. About 80% of the AChE was in the innervated membrane, and about 70% of the Na+-K+ ATPase in the non-innervated membrane. The data presented indicate that the light and heavy vesicle fractions separated by sucrose gradient centrifugation are not derived exclusively from the innervated and non-innervated membranes respectively, as previously suggested by others, but contain membrane fragments from both sides of the electroplax. The separation of two populations on sucrose gradients may be explained both by the differences in permeability and in protein to phospholipid ratios.  相似文献   

7.
We have studied the localization of osmium reduction products to investigate the functional state of organelles as well as organelle interrelationships during cell injury. In normal hepatocytes osmium deposits of variable intensity are seen in nuclear envelope, endoplasmic reticulum. Golgi cisternae and vesicles and lysosomes. Buffering of osmium with s- collidine (pH 7.4) prevents the deposition of osmium. Reversible (30 min) and irreversible (60 min) ischemia without reflow causes no change in the pattern of osmium deposition. Irreversible ischemia followed by reflow causes decreased staining of endoplasmic reticulum (ER) and redistribution of the osmium deposits through the cytoplasm. Reversibly injured pancreatic acinar cells in cultured explants manifest a similar loss of osmium staining in the endoplasmic reticulum cisternae. The administration of antimicrotubule drugs induces an accentuation of osmium staining in localized cisternal elements of hepatocytes. These heavily stained cisternae appear to give rise to the bounding membranes of drug-induced autophagic vacuoles. Cytoplasmic organelles sequestered inside the autophagic vacuoles acquire intense staining when they begin to undergo degradation. In homogenized liver tissue all the subcellular organelles show osmium deposits. The deposits are preferentially localized along the organelle membranes. In particular the dense deposits in the ER lumen are not seen in the subcellular fractions. Phospholipase A2 (3 units/mg protein) enhances the deposition of osmium in the lumen of microsomal vesicles, whereas the presence of detergent has no such effect. Addition of EDTA to the homogenizing medium enhances the ultrastructural preservation of the subcellular fractions but has little effect on the deposition of osmium. OsO4 deposition occurs at acid pH and the intensity and pattern of the stain can be modified in vivo and in vitro. Osmium tetroxide deposition is induced at sites of membrane transformation (autophagic vacuoles) and degradation (lysosomes). Calcium influx and phospholipase activation (ischemia, tissue homogenization, phospholipase addition) enhance osmium deposition and/or influence the localization of the staining pattern.  相似文献   

8.
Membranes from roots of Lepidium sativum L. were investigated in situ and after fractionation by applying morphological and biochemical methods. After freeze-fracture combined with filipin labelling the tonoplast and the plasma membrane could be easily characterized by the frequency of intramembranous particles and the arrangement of filipin-induced lesions. On tonoplast vesicles, the filipin-induced lesions were arranged in clusters of different size whereas they were evenly distributed on plasma membrane vesicles. Enrichment of tonoplast and plasma membrane in different fractions was documented by filipin labelling, phosphotungstic acid staining and by the profiles of marker enzyme activities and ATP-dependent H+-transport. Additionally, the presence of rightside-out and inside-out vesicles of both tonoplast and plasma membrane could be demonstrated. It was found that filipin labelling used in combination with freeze-fracturing is suitable for quantitative determinations of the percentages of tonoplast and plasma membrane in membrane fractions, which have been found to be more than 40% for the tonoplast and about 40% for plasma membrane in the respective enriched fractions.Abbreviations EF extraplasmatic fracture face - FIL filipin induced lesion - IMP intramembranous particle - PF plasmatic fracture face - PTA phosphotungstic acid-chromic acid stain - UDPG uridine 5-diphosphate glucose A preliminary report was presented at the joint Annual Meeting of the Belgian and German Societies for Cell Biology, Bonn, March 1985Dedicated to Professor Augustin Betz on the occasion of his 66th birthday  相似文献   

9.
Proteins with molecular weights of around 100,000 (designated 100K) are found in all coated vesicles. Five monoclonal antibodies have been raised against the major 100K proteins of bovine brain coated vesicles, which migrate on SDS gels as three closely spaced bands. One antibody stains the middle band (band B), two stain both upper and lower bands (bands A and C), and two stain the lower band (band C) only. Thus, the polypeptides in bands A and C are related (but not identical), a result confirmed by NH2-terminal sequencing. Other tissues were found to express proteins corresponding to, and co-migrating with, bands B and C but not band A. Only the two antibodies that recognize both A and C stained fixed and permeabilized tissue culture cells; they both showed a punctate pattern in the plane of the plasma membrane. Double labeling with anti-clathrin antibodies confirmed that the dots correspond to coated pits and vesicles. However, perinuclear staining seen with anti-clathrin, corresponding to Golgi-derived coated vesicles, was conspicuously absent with the two monoclonal antibodies. Affinity-purified polyclonal antisera against the 100K proteins, reported earlier, gave perinuclear as well as punctate staining; these included one antiserum which gave mainly perinuclear staining (Robinson, M. S., and B. M. F. Pearse, 1986, J. Cell Biol., 102:48-54). Thus, different 100K proteins appear to be found in different membrane compartments. Since the 100K proteins are thought to lie between clathrin and the membrane proteins of the vesicle, these results may help to explain how different membrane proteins can be sorted into coated vesicles in different parts of the cell.  相似文献   

10.
The subcellular distribution of proteins normally visible on two-dimension gels of rat brain tissue punches and crude brain homogenate was investigated using two-dimensional gel electrophoresis and computerized scanning densitometry. Seven enriched subcellular fractions (cytosol, mitochondria, microsomes, nucleus, crude synaptic vesicles, myelin and synaptic membrane) were generated from a crude extract of rat brain. Fifty microgram samples of the crude homogenate and each fraction were then taken and the proteins within these samples separated by two-dimensional gel electrophoresis. Proteins were stained with silver and the gels then analyzed by computerized scanning densitometry. Of 136 proteins visible on two-dimension gels of the crude homogenate that were quantitatively examined, a total of 73 (54%) were identified as being primarily located in a single subcellular fraction. The majority of these 73 proteins were found to be located primarily in either the cytosolic or mitochondrial fractions, while fewer proteins were identified as being primarily located in the microsomal, nuclear or crude synaptic vesicular subfractions. In contrast, the myelin and synaptic membrane fractions were found to be the primary location for only a single protein each that is clearly visible in the crude homogenate. In addition, gels of four of the subfractions (mitochondria, cytosol, nucleus and myelin) contained proteins that are not normally visible on gels generated using a crude extract. The subcellular location of a number of proteins found previously to be altered by specific experimental manipulations was also determined, providing further information on these proteins in brain. These results should prove useful in future experiments designed towards isolating and characterizing specific proteins of neurochemical interest.  相似文献   

11.
A novel compositional overlap between membranes of exocrine and endocrine granules, synaptic vesicles, and a liver Golgi fraction has been identified using a monoclonal antibody (SG7C12) raised against parotid secretion granule membranes. This antibody binds secretory carrier membrane proteins with apparent Mr 31,000, 33,000 and 35,000 (designated SCAMPs 31, 33, 35). The proteins are nonglycosylated integral membrane components, and the epitope recognized by SG7C12 is on the cytoplasmic side of the granule membrane. SCAMP 33 is found in all secretory carrier membranes studied so far while SCAMP 35 is found in exocrine and certain endocrine granules and liver Golgi membranes and SCAMP31 only in exocrine granules. They are not related to other similar-sized proteins that have been studied previously in relation to vesicular transport and secretion. Immunocytochemical staining shows that these SCAMPs are highly concentrated in the apical cytoplasm of exocrine cells. Antigens are present not only on exocrine granules and synaptic vesicles but also on other smooth membrane vesicles of exocrine and neural origin as revealed by immunolocalization in subcellular fractions and immunoadsorption to antibody-coated magnetic beads. The wide tissue distribution and localization to secretory carriers and related membranes suggest that SCAMPs 31-35 may be essential components in vesicle-mediated transport/secretion.  相似文献   

12.
We describe the ultrastructural localization of plasma cell immunoglobulins in vibratome sections of popliteal lymph nodes. Fixation with glutaraldehyde-paraformaldehyde gave better tissue and antigen preservation than paraformaldehyde or periodic acid lysine-paraformaldehyde; biotinylated Fab fragments of sheep anti-mouse IgG-streptavidin-biotinylated horseradish peroxidase (HRP) or Fab-HRP conjugates gave similar results. With both immunoreagents, excellent tissue preservation and antigen detection was observed in the first layer of cells sectioned with the vibratome. Conjugates of anti-mouse IgG with HRP did not show any staining. Peroxidase stain was observed in the nuclear envelope, cisternae of the rough endoplasmic reticulum, and the Golgi apparatus complex. In the Golgi apparatus, staining was seen consistently in cisternae of the cis face and in adjacent vesicles; the trans cisternae showed weak or no stain, and adjacent vesicles, "coated" vesicles, and granules were not stained. This study shows that high quality of tissue preservation and antigen detection, by both light and ultrastructural immunocytochemistry, is feasible in tissue fixed with glutaraldehyde-paraformaldehyde followed by vibratome sectioning and immunostaining with Fab-biotin-streptavidin-biotin-HRP, or Fab-HRP.  相似文献   

13.
Our group previously described a new type of G protein, the 78-kDa XLalphas (extra large alphas) (Kehlenbach, R. H., Matthey, J., and Huttner, W. B. (1994) Nature 372, 804-809 and (1995) Nature 375, 253). Upon subcellular fractionation, XLalphas labeled by ADP-ribosylation with cholera toxin was previously mainly detected in the bottom fractions of a velocity sucrose gradient that contained trans-Golgi network and was differentially distributed to Galphas, which also peaked in the top fractions containing plasma membrane. Here, we investigate, using a new antibody specific for the XL domain, the tissue distribution and subcellular localization of XLalphas and novel splice variants referred to as XLN1. Upon immunoblotting and immunofluorescence analysis of various adult rat tissues, XLalphas and XLN1 were found to be enriched in neuroendocrine tissues, with a particularly high level of expression in the pituitary. By both immunofluorescence and immunogold electron microscopy, endogenous as well as transfected XLalphas and XLN1 were found to be predominantly associated with the plasma membrane, with only little immunoreactivity on internal, perinuclear membranes. Upon subcellular fractionation, immunoreactive XLalphas behaved similarly to Galphas but was differentially distributed to ADP-ribosylated XLalphas. Moreover, the bottom fractions of the velocity sucrose gradient were found to contain not only trans-Golgi network membranes but also certain subdomains of the plasma membrane, which reconciles the present with the previous observations. To further investigate the molecular basis of the association of XLalphas with the plasma membrane, chimeric proteins consisting of the XL domain or portions thereof fused to green fluorescent protein were analyzed by fluorescence and subcellular fractionation. In both neuroendocrine and non-neuroendocrine cells, a fusion protein containing the entire XL domain, in contrast to one containing only the proline-rich and cysteine-rich regions, was exclusively localized at the plasma membrane. We conclude that the physiological role of XLalphas is at the plasma membrane, where it presumably is involved in signal transduction processes characteristic of neuroendocrine cells.  相似文献   

14.
Summary Ultrastructure of the association between the rust fungus, Melampsora lini, and a compatible variety of flax, Linum usitatissimum, was studied to clarify the structural relationships and interactions at the site of host penetration and at the host-parasite interface. Results of freeze-etching as well as a special section-staining procedure consisting of periodate-chromate-phosphotungstate (PACP) are shown with a host-parasite combination for the first time. The host plasma membrane is invaginated by the fungus and forms a continuous boundary around the fungal haustoria which penetrate the host cells. No morphological continuities are observed linking the protoplasts of host and fungus. With both freeze-etching and the PACP stain, the invaginated portion of the host plasma membrane at the host-parasite interface shows distinctive features that are not characteristic of the non-invaginated portion of the membrane. This localized specialization of host plasma membrane in response to the fungus appears as a significant and consistent feature of the host-parasite interaction. The host plasma membrane is separated from the haustorial wall by an amorphous layer of sheath material which covers the body but not the neck of the haustorium. This sheath provides the environment in which the haustorium exists and functions during the course of the host-parasite association. Occasionally, a collar of wall-like material derived from the host cell forms around the haustorial neck. The collar is continuous with the host wall and is distinct and discontinuous from the haustorial sheath. In fewer than 5% of the infected cells this wall material encases entire haustoria. The fungal wall is structurally specialized around the site of host penetration, and it becomes intimately associated with the host wall where the fungus penetrates into the lumen of the host cell. During penetration, the host and fungal walls appear to be fused so that the interface between them is not clearly delineated. The haustorial wall is continuous, via the haustorial neck, with the wall of the haustorial mother cell which lies outside the host cell. Different staining properties reveal this wall continuum to consist of several well-defined regions having different structure or composition. A ring of fungal wall material midway along the haustorial neck stains densely with lead citrate, but is preferentially etched away by periodic acid. The neck ring denotes a transition in the staining reaction of the fungal wall, from that present in the region of host penetration to that of the wall surrounding the haustorium. The findings demonstrate specialization of the fungal wall in the area of host penetration as well as specialization of the host plasma membrane at the host-parasite interface to a degree not previously realized from ultrastructural information.  相似文献   

15.
Cultured fibroblasts isolated from murine livers by tissue trypsinization were exposed to a static magnetic field (0.490 T) and to extremely low frequency (ELF) magnetic field (50 Hz, 0.020 T). The cultures were exposed to magnetic fields on four consecutive days for exposure times of 2, 4, 8, 16, 32, and 64 min. After such exposures and obtaining of fibroblast subcellular fractions, lipid peroxidation product—malondialdehyde (MDA) was measured. Increased peroxidation of fibroblasts' membrane structures exposed to an ELF magnetic field was observed in subcellular fractions—microsomal, mitochondrial, and nuclear. No changes in peroxidation of membrane structures were found in fibroblasts exposed to a static magnetic field.  相似文献   

16.
A full length cDNA clone for bovine dopamine beta-hydroxylase was expressed in rat pheochromocytoma PC12 cells by stable transformation of this cell line with a plasmid expression vector. The recombinant protein exhibited dopamine beta-hydroxylase enzyme activity and was found in both the soluble and membrane fractions of the secretory vesicle. Immunoprecipitation of cell extracts from recombinant cell lines with dopamine beta-hydroxylase antisera followed by fractionation on sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two subunits, which migrated to relative molecular masses of 76 and 78 kDa. The recombinant protein co-fractionated with neurotransmitter when subcellular structures were separated by sucrose gradient density centrifugation, suggesting that the protein was routed to the secretory vesicles. Dopamine beta-hydroxylase immunoreactivity in those sucrose gradient fractions presumed to contain secretory vesicles was resistant to treatment with trypsin unless the nonionic detergent Triton X-100 was also present to disrupt membrane structure. The 76- and 78-kDa isoform were each found in both the membrane and soluble fractions of the secretory vesicle. Treatment of cultured cells with nerve growth factor or 8-(4-chlorophenylthio)-cyclic AMP alters the relative distribution of the subunits such that the 76-kDa form predominates. The subcellular distribution of a dopamine beta-hydroxylase cDNA clone lacking the first 16 nucleotide residues was also determined. The predicted amino acid sequence of the protein encoded by this cDNA would be deleted of the first 13 residues of the signal sequence, which were reported to be present in the membrane-bound form, but not the soluble form, of native dopamine beta-hydroxylase (Taljanidisz, J., Stewart, L., Smith, A. J., and Klinman, J. P. (1989) Biochemistry 28, 10054-10061). Immunoprecipitable dopamine beta-hydroxylase derived from expression of the deleted cDNA was found in both the membrane-bound and soluble fractions of the secretory vesicle. These experiments demonstrate that the membrane-bound and soluble forms of dopamine beta-hydroxylase are derived from one primary translation product, which is also sufficient to produce enzyme activity. In addition, the amino-terminal amino acids encoding residues 1-13, which compose the hydrophilic region of the signal sequence, are not necessary for the biogenesis of membrane-bound dopamine beta-hydroxylase.  相似文献   

17.
Identification of coated vesicles in Saccharomyces cerevisiae   总被引:13,自引:5,他引:8  
Clathrin-coated vesicles were found in yeast, Saccharomyces cerevisiae, and enriched from spheroplasts by a rapid procedure utilizing gel filtration on Sephacryl S-1000. The coated vesicles (62-nm diam) were visualized by negative stain electron microscopy and clathrin triskelions were observed by rotary shadowing. The contour length of a triskelion leg was 490 nm. Coated vesicle fractions contain a prominent band with molecular weight of approximately 185,000 when analyzed by SDS PAGE. The presence of coated vesicles in yeast cells suggests that this organism will be useful for studying the function of clathrin-coated vesicles.  相似文献   

18.
Summary Endoplasmic reticulum, Golgi apparatus, plasma membrane and mitochondria vesicles were isolated from the roots of four-day-old dark-grown soybean [Glycine max (L.) Merr. cv. Wells II] seedlings and characterized by marker enzyme analyses. Glycoproteins of enriched membrane fractions were identified by concanavalin A (con A)-peroxidase staining of polypeptides separated by two-dimensional IEF-SDS-PAGE and transferred to nitrocellulose.Con A bound to many polypeptides in each endomembrane-enriched fraction with several glycopolypeptides common to all fractions. The mitochondria-enriched fraction possessed few glycopolypeptides and those appeared to be highly glycosylated contaminants of endomembrane origin. Comparison of the endomembrane con A-binding patterns revealed changes in relative stain intensity, molecular weight and isoelectric point of several membrane glycopolypeptides suggestive of processing reactions of the endomembrane complex.Abbreviations con A concanavalin A - PM plasma membrane - GA Golgi apparatus - ER endoplasmic reticulum  相似文献   

19.
Soylu S 《Mycopathologia》2004,158(4):457-464
In this study transmission electron microscopy (TEM) was used to examine details of the host–pathogen interface in Arabidopsis thaliana cotyledons infected by Albugo candida, causal agent of white blister. After successful entry through stomatal pores, the pathogen developed a substomatal vesicle and subsequently produced intercellular hyphae. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were spherical and 4.5 μm in diameter. Each haustorium was connected to intercellular hyphae by a narrow, slender haustorium neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. No obvious response was observed in host cells following formation of haustoria. Most of the mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cells suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotrophic Oomycete differs considerably from responses to other pathogens such as necrotrophs. Modification of the host plasma membrane (PM) along the cell wall and around the haustoria, was detected by applying the periodic acid-chromic acid-phosphotungstic acid (PACP) staining technique. After staining with PACP, the host PM was found to be intensely electron dense where it was adjacent to the host cell wall and the distal region of the haustorial neck. By contrast, the extrahaustorial membrane, where the host PM surrounded the haustorium, was consistently very lightly stained.  相似文献   

20.
The annexins are a group of highly related Ca2(+)-dependent membrane-binding proteins that are present in a wide variety of cells and tissues. We have examined the subcellular distribution of five members of the annexin family in the adrenal medulla. Bovine adrenal medullary tissue was homogenized in buffers containing EGTA and fractionated on sucrose gradients. p36 (the large subunit of calpactin I) was found to be predominantly membrane associated, with approximately 20% present in fractions enriched in chromaffin granules. In contrast, lipocortin I was localized primarily to the cytosol, with only a small proportion found in plasma membrane-containing fractions. Like lipocortin I, endonexin I was found to be present almost entirely in the soluble fractions. The 67-kDa calelectrin was localized primarily to the plasma membrane fractions, with a small amount present in the chromaffin granule and cytoplasmic fractions. Synexin was present in both membranous and cytoplasmic fractions. p36 appeared to be a peripherally associated granule membrane protein in that it was dissociated from the membrane by addition of base and it partitioned with the aqueous phase when granule membranes were treated with Triton X-114. Antiserum against p10 (the small subunit of calpactin I) reacted with a protein of 19 kDa that is specifically localized in chromaffin granule membrane fractions. The differences in subcellular distributions of the annexins suggest that these proteins have distinct cellular functions. The finding that p36 is associated with chromaffin granule and plasma membrane fractions provides further support for a possible role of calpactin in exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号