首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-Threonic acid is a natural constituent in leaves of Pelargonium crispum (L.) L'Hér (lemon geranium) and Rumex x acutus L. (sorrel). In both species, l-[(14)C]threonate is formed after feeding l-[U-(14)C]ascorbic acid to detached leaves. R. acutus leaves labeled with l-[4-(3)H]- or l-[6-(3)H]ascorbic acid produce l-[(3)H]threonate, in the first case internally labeled and in the second case confined to the hydroxymethyl group. These results are consistent with the formation of l-threonate from carbons three through six of l-ascorbic acid. Detached leaves of P. crispum oxidize l-[U-(14)C] threonate to l-[(14)C]tartrate whereas leaves of R. acutus produce negligible tartrate and the bulk of the (14)C appears in (14)CO(2), [(14)C]sucrose, and other products of carbohydrate metabolism. R. acutus leaves that are labeled with l-[U-(14)C]threonate release (14)CO(2) at linear rate until a limiting value of 25% of the total [U-(14)C]threonate is metabolized. A small quantity of [(14)C]glycerate is also produced which suggests a process involving decarboxylation of l-[U-(14)C]threonate.  相似文献   

2.
The appearance of plasma [14C]glucose in the inferior cava vein after a pulse of 0.2 mmol of [U-14C]L-alanine or [U-14C]glycerol/200 g body wt given through the portal vein was studied in fed 21 day pregnant rats and virgin controls under pentobarbital anesthesia. In both groups values were much higher when [U-14C]glycerol was the administered tracer than when [U-14C]L-alanine, and they were augmented in pregnant versus virgin animals at 1 min when receiving [U-14C]glycerol and at 2 min when receiving [U-14C]L-alanine. 20 min after the tracers rats receiving [U-14C]glycerol showed much higher liver [14C]glycogen and [14C]glyceride glycerol than those receiving [U-14C]L-alanine. Radioactivity present in liver as [14C]glyceride glycerol was greater in pregnant than in virgin rats receiving [U-14C]glycerol whereas radioactivity corresponding to [14C]fatty acids was lower in the former group receiving either tracer. At 20 min after maternal treatments fetuses showed lower plasma [14C]glycerol than [14C]alanine values but plasma [14C]glucose and liver [14C]glycogen values were much greater in fetuses from mothers receiving [U-14C]glycerol than [U-14C]L-amine. Besides showing the higher gluconeogenic efficiency in pregnant than in virgin rats, results indicate that at late gestation glycerol is used as a preferential substrate for both glucose and glyceride glycerol synthesis in liver.  相似文献   

3.
Branched-chain amino acid metabolism in hemidiaphragms from 40 h-starved rats is influenced by the provision of glucose as co-substrate. Glucose inhibits 14CO2 production from [l-14C]valine and [U-14C]valine but stimulates 14CO2 production from [l-14C]leucine, [U-14C]leucine and [U-14C]isoleucine. In the presence of glucose, ketone bodies inhibit alanine release and 14CO2 production from [l-14C]valine, [l-14C]leucine and [U-14C]isoleucine, but inhibition is not observed in the absence of glucose as cosubstrate. Glucose-dependent inhibition by ketone bodies of branched-chain amino acid oxidation via inhibition of the branched-chain 2-oxo acid dehydrogenase complex or branched-chain amino acid aminotransferase may account in part for the reported hypoalanaemic action of ketone bodies in vivo.  相似文献   

4.
A fractionation procedure has been developed which permits the isolation of 1 to 2 mg of homarine from a single shrimp. This procedure was used to show that homarine is endogenously synthesized by Penaeus duorarum in the free unbound form, and to study the metabolic precursors involved. Injected DL-[14C]tryptophan was not converted to [14C]homarine. However, [6-14C]quinolinic acid, a known catabolite of tryptophan, is an effective precursor. [2-14C]Acetate and [U-14C]glycerol are effectively converted to [14C]homarine while [14C]bicarbonate is poorly utilized. The injection of L-[U-14C]aspartate resulted in labeled homarine, but the quantity converted was less than expected. Since [14C]glycerol is an effective precursor there is a possibility that quinolinic acid may be formed in P. duorarum by a condensation similar to that of glyceraldehyde 3-phosphate with aspartic acid or a closely related metabolite. It is suggested that decarboxylation of quinolinic acid gives rise to picolinic acid which is methylated to yield homarine. L-[methyl-14C]Methionine efficiently provides the N-methyl carbon presumably via S-adenosylmethionine.  相似文献   

5.
1. The effect of fluoroacetate and fluorocitrate on the compartmentation of the glutamate-glutamine system was studied in brain slices with l-[U-(14)C]glutamate, l-[U-(14)C]aspartate, [1-(14)C]acetate and gamma-amino[1-(14)C]butyrate as precursors and in homogenates of brain tissue with [1-(14)C]acetate. The effect of fluoroacetate was also studied in vivo in mouse brain with [1-(14)C]acetate as precursor. 2. Fluoroacetate and fluorocitrate inhibit the labelling of glutamine from all precursors but affect the labelling of glutamate to a much lesser extent. This effect is not due to inhibition of glutamine synthetase. It is interpreted as being due to selective inhibition of the metabolism of a small pool of glutamate that preferentially labels glutamine.  相似文献   

6.
1. At 28 degrees C, synthesis of protein cyst coat in ciliates of Colpoda steinii is induced by washing with water and, as judged by glutamic acid assays and incorporation studies with l-[U-(14)C]leucine, starts about 30min after the cells have stopped swimming and is largely complete 90min later. During this time up to 70% of the protein synthesized by the cell is coat protein. 2. When cells were placed in l-[U-(14)C]leucine at low concentrations (0.25-0.76mm) during the period of coat synthesis there was no lag in uptake. Only a small proportion of the leucine incorporated into the coat was from the external substrate, implying that the rate of radioactive isotope incorporation measured the rate of transport of amino acid into the cell. Transport of l-[U-(14)C]leucine into the cell was markedly stimulated by l-glutamic acid and l-lysine. 3. When cells were placed in l-[U-(14)C]leucine at high concentrations (38mm) the rate of incorporation was considered to measure the rate of protein synthesis, but because the latter may have been affected by substrate it is concluded that such measurements are of doubtful value.  相似文献   

7.
Pulse-chase experiments in Bacillus megaterium ATCC 14581 with [U-14C]palmitate, L-[U-14C]serine, and [U-14C]glycerol showed that a large pool of phosphatidylglycerol (PG) which exhibited rapid turnover in the phosphate moiety (PGt) underwent very rapid interconversion with the large diglyceride (DG) pool. Kinetics of DG labeling indicated that the fatty acyl and diacylated glycerol moieties of PGt were also utilized as precursors for net DG formation. The [U-14C]glycerol pulse-chase results also confirmed the presence of a second, metabolically stable pool of PG (PGs), which was deduced from [32P]phosphate studies. The other major phospholipid, phosphatidylethanolamine (PE), exhibited pronounced lags relative to PG and DG in 14C-fatty acid, [14C]glycerol, and [32P]phosphate incorporation, but not for incorporation of L-[U-14C]serine into the ethanolamine group of PE or into the serine moiety of the small phosphatidylserine (PS) pool. Furthermore, initial rates of L-[U-14C]serine incorporation into the serine and ethanolamine moieties of PS and PE were unaffected by cerulenin. The results provided compelling in vivo evidence that de novo PGt, PS, and PE synthesis in this organism proceed for the most part sequentially in the order PGt yields PS yields PE rather than via branching pathways from a common intermediate and that the phosphatidyl moiety in PS and PE is derived largely from the corresponding moiety in PGt, whereas the DG pool indirectly provides an additional source for this conversion by way of the facile PGt in equilibrium or formed from DG interconversion.  相似文献   

8.
14CO2 production from [l-14C]oleate, [l-14C]butyrate and [U-14C]proline by isolated rat hepatocytes was studied. In hepatocytes from fed rats, fatty acid and proline oxidation are stimulated in parallel by adrenaline, noradrenaline, vasopressin and angiotensin II. In contrast in hepatocytes from 24 h-starved rats these hormones stimulate proline oxidation whereas oleate and butyrate oxidation is hormone-insensitive. This suggests that 14CO2 production from [U-14C]proline and [l-14C]oleate is subject to independent endocrine control. In support of this in hepatocytes from fed rats, glucagon and dibutyryl cyclic AMP stimulate 14CO2 production from proline but inhibit 14CO2 production from [l-14C]oleate. The pathway of hepatic proline oxidation is discussed and it is suggested that 2-oxoglutarate dehydrogenase is one site of endocrine control of proline oxidation.  相似文献   

9.
1. Kidney-cortex slices from starved rats were incubated with l-[U-(14)C]lactate or l-[U-(14)C]malate plus unlabelled acetate and the specific radioactivity of the glucose formed was determined. In parallel experiments the specific radioactivity of the glucose formed from [1-(14)C]acetate plus unlabelled l-lactate and l-malate was determined. 2. By analytical methods the major products formed from the substrates were measured. The glucose formed was purified by paper chromatography for determination of specific radioactivity. 3. The specific radioactivity of the glucose formed from l-[U-(14)C]lactate agrees with predictions of a model based on interaction of the gluconeogenic and the oxidative pathways. 4. The specific radioactivity of the glucose formed from l-[U-(14)C]malate agrees with the predicted value if rapid malate exchange between the cytosol and mitochondria is assumed. 5. The rate of malate exchange between compartments was estimated to be rapid and at least several times the rate of glucose formation. 6. The specific radioactivity of the glucose formed from [1-(14)C]acetate plus unlabelled l-lactate or l-malate agrees with the predictions from the model, again assuming rapid malate exchange between compartments. 7. Malate exchange between compartments together with reversible malate dehydrogenase activity in the mitochondria and cytosol also tends to equilibrate isotopically the NADH pool in these compartments. (3)H from compounds such as l-[2-(3)H]lactate, which form NAD(3)H in the cytosol, appears in part in water; and (3)H from dl-beta-hydroxy[3-(3)H]butyrate, which forms NAD(3)H in the mitochondria, appears in part in glucose, largely on C-4.  相似文献   

10.
T Tamura  M Wada  N Esaki    K Soda 《Journal of bacteriology》1995,177(9):2265-2269
Streptomyces cattleya produces fluoroacetate and 4-fluorothreonine from inorganic fluoride added to the culture broth. We have shown by 19F nuclear magnetic resonance (NMR) spectrometry that fluoroacetate is accumulated first in the culture broth and that accumulation of 4-fluorothreonine is next. To show precursors of the carbon skeleton of fluoroacetate, we carried out tracer experiments with various 14C- and 13C-labeled compounds. Radioactivity of [U-14C]glucose, [U-14C]glycerol, [U-14C]serine, and [U-14C]beta-hydroxypyruvate was incorporated into fluoroacetate to an extent of 0.2 to 0.4%, whereas [3-14C]pyruvate, [2,3-14C]succinate, and [U-14C]aspartate were less efficiently incorporated (0.04 to 0.08%). The addition of [2-13C]glycerol to the mycelium suspension of Streptomyces cattleya caused exclusive enrichment of the carboxyl carbon of fluoroacetate with 13C; about 40% of carboxyl carbon of fluoroacetate was labeled with 13C. We studied the radioactivity incorporation of [3-14C]-, [U-14C]-, and [1-14C]beta-hydroxypyruvates to show that C-2 and C-3 of beta-hydroxypyruvate are exclusively converted to the carbon skeleton of fluoroacetate. These results suggest that the carbon skeleton of fluoroacetate derives from C-1 and C-2 of glycerol through beta-hydroxypyruvate, whose hydroxyl group is eventually replaced by fluoride.  相似文献   

11.
1. p-Hydroxy[U-(14)C]benzoic acid, except for loss of the carboxyl group, is effectively incorporated into the nucleus of ubiquinone and an unidentified prenylphenol by maize roots, maize shoots, french-bean leaves, french-bean cotyledons and Ochromonas danica. Plastoquinone, alpha-tocopherol, gamma-tocopherol and alpha-tocopherolquinone are all unlabelled from this substrate. The high radioactivity of the prenylphenol and its behaviour in a pulse-labelling experiment with maize shoots suggested that it may be a ubiquinone precursor. 2. Members of the 2-polyprenylphenol and 6-methoxy-2-polyprenylphenol series, compounds that are known ubiquinone precursors in Rhodospirillum rubrum, could not be detected in maize tissues, but possibly they may occur as their glycosides. 3. [G-(14)C]Shikimic acid is incorporated into the nuclei of phylloquinone, plastoquinone, alpha-tocopherolquinone, gamma-tocopherol, alpha-tocopherol and ubiquinone in maize shoots, showing that in plant tissues the nuclei of these compounds arise via the shikimic acid pathway of aromatic biosynthesis. 4. l-[U-(14)C]Phenylalanine and l-[U-(14)C]tyrosine are incorporated into plastoquinone, gamma-tocopherol, alpha-tocopherolquinone and ubiquinone. alpha-Tocopherol, which is absent from shoots incubated with l-[U-(14)C]tyrosine, is also labelled from l-[U-(14)C]phenylalanine. Degradation studies showed that there is little (14)C radioactivity in the terpenoid portions of the molecules and from this it is concluded that the aromatic portions of these amino acids are giving rise to the quinone and chromanol nuclei. 5. It is proposed that in maize the nucleus of ubiquinone can be formed from either phenylalanine or tyrosine by a pathway involving p-coumaric acid and p-hydroxybenzoic acid. Plastoquinone, tocopherols and tocopherolquinones are formed from tyrosine by some pathway in which the aromatic ring and C-3 of the side chain of this amino acid gives rise to the nucleus and one methyl substituent respectively of these compounds.  相似文献   

12.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

14.
The aim of this study was to clone and characterize the SUGAR-DEPENDENT6 (SDP6) gene, which is essential for postgerminative growth in Arabidopsis (Arabidopsis thaliana). Mutant alleles of sdp6 were able to break down triacylglycerol following seed germination but failed to accumulate soluble sugars, suggesting that they had a defect in gluconeogenesis. Map-based cloning of SDP6 revealed that it encodes a mitochondrial flavin adenine dinucleotide (FAD)-dependent glycerol-3-P (G3P) dehydrogenase:ubiquinone oxidoreductase called FAD-GPDH. This gene has previously been proposed to play a role both in the break down of glycerol (derived from triacylglycerol) and in NAD(+)/NADH homeostasis. Germinated seeds of sdp6 were severely impaired in the metabolism of [U-(14)C]glycerol to CO(2) and accumulated high levels of G3P. These data suggest that SDP6 is essential for glycerol catabolism. The activity of the glycolytic enzyme phosphoglucose isomerase is competitively inhibited by G3P in vitro. We show that phosphoglucose isomerase is likely to be inhibited in vivo because there is a 6-fold reduction in the transfer of (14)C-label into the opposing hexosyl moiety of sucrose when [U-(14)C]glucose or [U-(14)C]fructose is fed to sdp6 seedlings. A block in gluconeogenesis, at the level of hexose phosphate isomerization, would account for the arrested seedling growth phenotype of sdp6 and explain its rescue by sucrose and glucose but not by fructose. Measurements of NAD(+) and NADH levels in sdp6 seedlings also suggest that NAD(+)/NADH homeostasis is altered, and this observation is consistent with the hypothesis that SDP6 participates in a mitochondrial G3P shuttle by cooperating with the cytosolic NAD-dependent GPDH protein GPDHC1.  相似文献   

15.
The conversion of l-[U-(14)C]lysine into carnitine was demonstrated in normal, choline-deficient and lysine-deficient rats. In other experiments in vivo radioactivity from l-[4,5-(3)H]lysine and dl-[6-(14)C]lysine was incorporated into carnitine; however, radioactivity from dl-[1-(14)C]lysine and dl-[2-(14)C]lysine was not incorporated. Administered l-[Me-(14)C]methionine labelled only the 4-N-methyl groups whereas lysine did not label these groups. Therefore lysine must be incorporated into the main carbon chain of carnitine. The methylation of lysine by a methionine source to form 6-N-trimethyl-lysine is postulated as an intermediate step in the biosynthesis of carnitine. Radioactive 4-N-trimethylaminobutyrate (butyrobetaine) was recovered from the urine of lysine-deficient rats injected with [U-(14)C]lysine. This lysine-derived label was incorporated only into the butyrate carbon chain. The specific radioactivity of the trimethylaminobutyrate was 12 times that of carnitine isolated from the urine or carcasses of the same animals. These data further support the idea that the last step in the formation of carnitine from lysine was the hydroxylation of trimethylaminobutyric acid, and are consistent with the following sequence: lysine+methionine --> 6-N-trimethyl-lysine --> --> 4-N-trimethylaminobutyrate --> carnitine.  相似文献   

16.
1. Surviving sheep colonic mucosal tissue incorporated l-[U-(14)C]threonine when incubated in Krebs medium III at 37 degrees in an atmosphere of oxygen, into a well-characterized mucoprotein fraction, isolated by papain digestion of the incubated scrapings. 2. Acidic hydrolysis and chromatography of the labelled mucoprotein showed that threonine was the only constituent to become labelled. In the presence of puromycin the incorporation of l-[U-(14)C]threonine was considerably diminished (6.7 and 18.5% of control in duplicate experiments). Furthermore, puromycin also decreased incorporation of radioactivity from d-[U-(14)C]-glucose (48.0 and 31.6% of control) and (35)SO(4) (2-) (21.2 and 23.6% of control) into the mucoprotein fraction. 3. In a puromycin-inhibited system, with d-[U-(14)C]-glucose, where the overall specific radioactivity of the mucoprotein was 48% of control, the labelling of the individual monosaccharide constituents (as% of control) was: N-acetylneuraminic acid, 44%; N-glycollylneuraminic acid, 61%; hexosamines, 46%; fucose, 68%; galactose, 34%.  相似文献   

17.
1. In pancreatic islets, a rise in glucose concentration is known to increase the ratio between D-[6-14C]glucose oxidation and D-[5-3H]glucose utilization. The opposite situation was found to prevail in parotid cells. 2. In rat pancreatic islets, D-glucose caused a concentration-related stimulation of 3H2O production from [2-3H]glycerol, but failed to affect 3H2O production from [1(3)-3H]glycerol or 14CO2 production from [U-14C]glycerol. At the low concentration used in most of these experiments (i.e. 1.0 mM), glycerol failed to affect D-[U-14C]glucose oxidation. 3. These findings suggest that the preferential stimulation by D-glucose of mitochondrial oxidative events in pancreatic islets represents an unusual situation in secretory cells and involves an accelerated circulation in the glycerol phosphate shuttle.  相似文献   

18.
Lipids from the archaebacterium Sulfolobus solfataricus are based on 72-membered macrocyclic tetraethers made up from two C40 diol units differently cyclized and either two glycerol moieties or one glycerol moiety and a unique branched-chain nonitol named calditol (glycerodialkylnonitol tetraethers, GDNTs). To elucidate the biosynthesis of calditol and related tetraethers, labelled precursors, [U-14C,1(3)-3H]glycerol, [U-14C,2-3H]glycerol, D-[1-14C,6-3H]glucose, D-[6-14C,1-3H]glucose, D-[1-14C,2-3H]glucose, D-[1-14C,6-3H]fructose and D-[1-14C]galactose, were fed to S. solfataricus. Without regard to stereochemistry or phosphorylation, incorporation experiments provided evidence that the biosynthesis of calditol occurs via an aldolic condensation between dihydroxyacetone and fructose, through a 2-oxo derivative of calditol as an intermediate. The latter is in turn reduced and then alkylated to yield the GDNTs. The biogenetic origins of both glycerol and C40 isoprenoid moieties of GDNTs are also discussed.  相似文献   

19.
Mature human erythrocytes were tested for their ability to synthetize membrane phospholipids from simple precursors: [32P]-orthophosphate (32Pi), [U-14C] glycerol, [U-14C] glucose, [U-14C] serine, and [U-14C] choline. The incorporation of these labels into phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), lysophosphatidylcholine (lyso-PC), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) was measured. All the phospholipids tested incorporated 32Pi, glycerol, and glucose in a time dependent manner. According to the rate of 32Pi incorporation, three groups of phospholipids could be distinguished: 1) PA, PIP2, PIP, lyso-PC; 2) PI and PS; 3) PC and PE, which incorporated 5 x 10(3), 40, and 6 nmol 32Pi/mmol phospholipid per 1 h, respectively. Moreover, [U-14C] serine and [U14C] choline were found to incorporate into phospholipids, and PS-decarboxylase activity could be measured. The possibility that the observed incorporation was due to contamination with bacteria or other blood cells could be ruled out. Our results bring evidence for de novo phospholipid synthesis of human red blood cells.  相似文献   

20.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号