首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
Growth chamber studies with soybeans (Glycine max [L.] Merr.) were designed to determine the relative limitations of NO3, NADH, and nitrate reductase (NR) per se on nitrate metabolism as affected by light and temperature. Three NR enzyme assays (+NO3in vivo, −NO3in vivo, and in vitro) were compared. NR activity decreased with all assays when plants were exposed to dark. Addition of NO3 to the in vivo NR assay medium increased activity (over that of the −NO3in vivo assay) at all sampling periods of a normal day-night sequence (14 hr-30 C day; 10 hr-20 C night), indicating that NO3 was rate-limiting. The stimulation of in vivo NR activity by NO3 was not seen in plants exposed to extended dark periods at elevated temperatures (16 hr-30 C), indicating that under those conditions, NO3 was not the limiting factor. Under the latter condition, in vitro NR activity was appreciable (19 μmol NO2 [g fresh weight, hr]−1) suggesting that enzyme level per se was not the limiting factor and that reductant energy might be limiting.  相似文献   

5.
Diurnal variations of nitrate reductase (NR) activity and stability have been studied in leaves of barley seedlings ( Hordeum vulgare L. cv. Herta) grown in an 8 h light/16 h darkness regime. Stability (decay) of NR was tested both in the extracts and in the plants. In the morning, when the plants were transferred to light, NR activity increased rapidly during the first hour and then remained constant. After the photoperiod, activity decreased rapidly during the first hour of darkness and then remained fairly constant during the rest of the dark period. The high NR activity during the photoperiod was associated with low NR stability both in the extracts and in the plants. On the other hand the low NR activity during the dark period was associated with high stability in the extracts and in the plants.  相似文献   

6.
The relation between nitrate reductase (NR; EC 1.6.6.1) activity, activation state and NR protein in leaves of barley (Hordeum vulgare L.) seedlings was investigated. Maximum NR activity (NRAmax) and NR protein content (Western blotting) were modified by growing plants hydroponically at low (0.3 mM) or high (10 mM) nitrate supply. In addition, plants were kept under short-day (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions in order to manipulate the concentration of nitrate stored in the leaves during the dark phase, and the concentrations of sugars and amino acids accumulated during the light phase, which are potential signalling compounds. Plants were also grown under phosphate deficiency in order to modify their glucose-6-phosphate content. In high-nitrate/long-day conditions, NRAmax and NR protein were almost constant during the whole light period. Low-nitrate/long-day plants had only about 30% of the NRAmax and NR protein of high-nitrate plants. In low-nitrate/long-day plants, NRAmax and NR protein decreased strongly during the second half of the light phase. The decrease was preceded by a strong decrease in the leaf nitrate content. Short daylength generally led to higher nitrate concentrations in leaves. Under short-day/low-nitrate conditions, NRAmax was slightly higher than under long-day conditions and remained almost constant during the day. This correlated with maintenance of higher nitrate concentrations during the short light period. The NR activation state in the light was very similar in high-nitrate and low-nitrate plants, but dark inactivation was twice as high in the high-nitrate plants. Thus, the low NRAmax in low-nitrate/long-day plants was slightly compensated by a higher activation state of NR. Such a partial compensation of a low NRmax by a higher dark activation state was not observed with phosphate-depleted plants. Total leaf concentrations of sugars, of glutamine and glutamate and of glucose-6-phosphate did not correlate with the NR activation state nor with NRAmax. Received: 24 March 1999 / Accepted: 31 May 1999  相似文献   

7.
Nitrate reductase activity (NRA; NADH-nitrate reductase, E. C. 1.6.6.1) has been measured in extracts from leaves of spinach ( Spinacia oleracea L.) in response to rapid changes in illumination, or supply of CO2 or oxygen. Measured in buffers containing magnesium, NRA from leaves decreased in the dark and increased again upon illumination. It decreased also, when CO2 was removed in continuous light, and was reactivated when CO2 was added. Nitrate reductase (NR) from roots of pea ( Pisum sativum L.) was also rapidly modulated in vivo. It increased under anaerobiosis and decreased in air or pure oxygen. The half time for inactivation or reactivation in roots and leaves was 5 to 30 min.
When spinach leaves were harvested during a normal day/night cycle, extractable NRA was low during the night, and high during daytime. However, at any point of the diurnal cycle, NR could be brought to a similar maximum activity by preincubation of the desalted leaf extract with AMP and/or EDTA. Thus, the observed diurnal changes appeared to be mainly a consequence of enzyme modulation, not of protein turnover. In vivo, the reactivation of the inactivated enzyme from both leaves and roots was prevented by okadaic acid, and inhibitor of certain protein phosphatases. Artificial lowering of the ATP-levels in leaf or root tissues by anaerobiosis (dark), mannose or the uncoupler carbonyl cyanide m -chlorophenyl hydrazon (CCCP), always brought about full activation of NR.
By preincubating crude leaf or root extracts with MgATP, NR was inactivated in vitro. Partial purification from spinach leaves of two enzymes with molecular masses in the 67 kD and 100 kD range, respectively, is reported. Both participate in the ATP-dependent inactivation of NR.
Alltogether these data indicate that NR can be rapidly modulated by reversible protein phosphorylation/dephosphorylation, both in shoots and in roots.  相似文献   

8.
Of the different hormones tested, cytokinins stimulated nitrate-induced nitrate reductase (NR) activity in the dark. The optimal stimulation was obtained at 16 hr and this was sensitive to tungstate, 6-methylpurine and cycloheximide. The cytokinin stimulation of NR activity was further enhanced by brief irradiation with red light, but this effect was not noticed when leaves were exposed to far-red light. Both kinetin and red light, when given together, or given with a darkness interruption, stimulated the NR activity more than with either of them alone.  相似文献   

9.
Activity of nitrate reductase (NR; EC 1.6.6.1) in leaves of Komatsuna (Brassica campestris L. ssp. rapifera cv. Osome) was decreased by sudden darkness, and rapidly recovered upon reillumination. However, the amount of NR protein, estimated by western blots, did not fluctuate during short-term light/dark/light transitions. This suggests that rapid changes of NR activity in response to light/dark regimes are due to reversible modulation of the protein and not to de novo synthesis/degradation. In mannose-fed leaves, such light/dark changes in NR activity were not observed. When extracts from illuminated leaves were incubated with MgATP, NR activity decreased in a time-dependent manner. K-252a, a specific inhibitor of protein kinases, prevented the in vitro inactivation of NR. The radiolabel of [γ-32P] ATP was incorporated into NR protein in vitro and the labelling of NR was blocked by K-252a. On the other hand, extractable NR from darkened leaves was activated by incubation at 30°C without further additions. The in vitro activation of NR was prevented by calyculin A, a potent and specific inhibitor of protein phosphatase. Moreover calyculin A abolished the in vivo activation of NR by illumination. Our results confirm a regulatory system by phosphorylation/dephosphorylation of NR. The data also suggest that the activity of NR depends on the relative phosphorylation/dephosphorylation activities subtly controlled in response to photon flux density.  相似文献   

10.
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by chemiluminescence detection, and its response to post-translational NR modulation was examined in vitro and in vivo. NR (purified or in crude extracts) in vitro produced NO at saturating NADH and nitrite concentrations at about 1% of its nitrate reduction capacity. The K(m) for nitrite was relatively high (100 microM) compared to nitrite concentrations in illuminated leaves (10 microM). NO production was competitively inhibited by physiological nitrate concentrations (K(i)=50 microM). Importantly, inactivation of NR in crude extracts by protein phosphorylation with MgATP in the presence of a protein phosphatase inhibitor also inhibited NO production. Nitrate-fertilized plants or leaves emitted NO into purified air. The NO emission was lower in the dark than in the light, but was generally only a small fraction of the total NR activity in the tissue (about 0.01-0.1%). In order to check for a modulation of NO production in vivo, NR was artificially activated by treatments such as anoxia, feeding uncouplers or AICAR (a cell permeant 5'-AMP analogue). Under all these conditions, leaves were accumulating nitrite to concentrations exceeding those in normal illuminated leaves up to 100-fold, and NO production was drastically increased especially in the dark. NO production by leaf extracts or intact leaves was unaffected by nitric oxide synthase inhibitors. It is concluded that in non-elicited leaves NO is produced in variable quantities by NR depending on the total NR activity, the NR activation state and the cytosolic nitrite and nitrate concentration.  相似文献   

11.
Spinach (Spinacia oleracea L.) leaf nitrate reductase (NADH:NR;NADH:nitrate oxidoreductase, EC 1.6.6.1) activity was found to rapidly change during light/dark transitions. The most rapid and dramatic changes were found in a form of NR which was sensitive to inhibition by millimolar concentrations of magnesium. This form of NR predominated in leaves in the dark, but was almost completely absent from leaves incubated in the light for only 30 min. When the leaves were returned to darkness, the NR rapidly became sensitive to Mg2+ inhibition. Modulation of the overall reaction involving NADH as electron donor was also found when reduced methyl viologen was the donor (MV:NR), indicating that electron transfer had been blocked, at least in part, at or near the terminal molybdenum cofactor site. Changes in activity appear to be the result of a covalent modification that affects sensitivity of NR to inhibition by magnesium, and our results suggest that protein phosphorylation may be involved. NR was phosphorylated in vivo after feeding excised leaves [32P]Pi. The NR subunit was labeled exclusively on seryl residues in both light and dark. Tryptic peptide mapping indicated three major 32P-labeled phosphopeptide (Pp) fragments. Labeling of two of the P-peptides (designated Pp1 and 3) was generally correlated with NR activity assayed in the presence of Mg2+. In vivo, partial dephosphorylation of these sites (and activation of NR assayed with Mg2+) occurred in response to light or feeding mannose in darkness. The light effect was blocked completely by feeding okadaic acid via the transpiration stream, indicating the involvement of type 1 and/or type 2A protein phosphatases in vivo. While more detailed analysis is required to establish a causal link between the phosphorylation status of NR and sensitivity to Mg2+ inhibition, the current results are highly suggestive of one. Thus, in addition to the molecular genetic mechanisms regulating this key enzyme of nitrate assimilation, NR activity may be controlled in leaves by phosphorylation/dephosphorylation of the enzyme protein resulting from metabolic changes taking place during light/dark transitions.  相似文献   

12.
在有PCR和PCO环活性抑制剂甘油醛和光合磷酸化解偶联剂NH4CL存在下,比较了生长于 3种 光环境的乔木黧蒴和灌木九节幼苗阳生和阴生叶片叶绿体的O2和NO2光还原速率。全自然光下两种 植物阳生叶片的叶绿体O2的光还原速率最高,占总光合电子传递活性的66%-68%,NO2光还原速率 也有类似趋势占总电子传递的11%-15%左右。36%和16%自然光下阴生叶片O2和NO2光还原 速率及O2光还原电子传递的比例显著降低,但NO2光还原电子传递的比例不受影响。与NO2光还原 相关的叶片NiR和NR活性及NiR/NR活性比也因叶片接受光强度大小而异,随光强减弱,黧蒴的 NiR活性降低,九节的NR活性增高,但黧蒴的NR活性和九节的NiR活性变化未达差异显著性。  相似文献   

13.
The effects of increased sink-source ratios, induced by elevating night temperatures, on remobilization of 14C-assimilates and N within field-grown soybeans (Glycine max [L.] Merr.) was investigated from preflowering to maturity. Raising the mean minimum night temperature for the entire growing season from 10 (check, uncontrolled) to 16°C increased seed growth without appreciable effect on final leaf area. Increasing this temperature to 24°C increased seed growth and reduced final leaf area. Leaves, stems, petioles, and pods acted as intermediate storage sites for 14C assimilates. Only plants with higher night temperatures remobilized some of the stored assimilates during the period of rapid seed growth. Even the seeds in the 24°C plants with the largest sink-source ratios did not utilize all the C-assimilates potentially available for remobilization. Nitrogen was readily remobilized from petioles, stems, and pods of all treatments as early as the beginning of seed development, but from the leaves only during late seed-filling. However, only plants with elevated night temperatures tended to remobilize all of the available N from vegetative tissues and pods. We concluded that a larger portion of stored assimilates may be remobilized to the seed if a strong seed sink can be sustained. It also appeared that with increasing sink-source ratios, N shortage might limit seed yield before a lack of C-assimilates would. A proposed model for soybean assimilate demand, distribution, partitioning, and remobilization is presented.  相似文献   

14.
The activities of glutamate dehydrogenase (GDH), glutamine synthetase (GS), and nitrate reductase (NR) and the levels of soluble protein and NO-3 were assayed in soybean (Glycine max [L.] Merr.) leaves over a 48-h period with the initial 24 h under a light-dark cycle (LD 16:8) followed by 24 h of continuous light (LL). Plants had been entrained for 30 days under the LD regime. Maize (Zea mays) leaves (10 days old) under a LD 15:9 cycle were assayed only for NR and nitrite reductase (NiR). Data were subjected to frequency analysis by the least squares method to determine probabilities for cosine function periods (τ's) between 10 and 30 h. NR activities for both soybean and Zea leaves had 24 h τ's with P values < 0.05 indicating circadian periodicity. GDH in soybeans had a 24-h rhythm under LD conditions which lengthened under LL conditions. The 24-h rhythm of GDH displayed maximal activity toward the end of the dark period of the LD cycle whereas the highest activity of NR was early in the light period. Total soluble protein displayed a rhythm with a best fitting τ of greater than 24 h under both LD and LL. GDH, GS, NR, NO3, and soluble protein in soybeans and NiR in Zea, all displayed that were ultradian (10–18 h), indicating that a τ of about one half a circadian periodicity may be a common characteristic of the enzymes of primary nitrogen metabolism in higher plants. These data also demonstrate that although both NR and GDH are circadian in their activity, the 24-h rhythm may be greatly influenced by ultradian oscillations in activity.  相似文献   

15.
Both the in vivo (+ nitrate) nitrate reductase (NR) activity (leaf disks incubated in the presence of KNO3) and the in vivo (? nitrate) NR activity (leaf disks incubated without KNO3) in leaves of eggplant (Solanum melongena L. cv. Bonica) were affected by rapidly growing fruits. Plants with a fruit load showed more pronounced diurnal variation in (+ nitrate) NR activity and higher (? nitrate) NR activity than plants without fruit. The higher (? nitrate) NR activity was accompanied by higher nitrate and lower sucrose and starch contents of leaves. The more pronounced diurnal changes in (+ nitrate) NR activity were paralleled by more pronounced diurnal variation in carbohydrate content of leaves. Fruit removal led to a decrease in both (? nitrate) NR activity and nitrate concentration in leaves, while the carbohydrate content increased. Plants supplied with ammonium instead of nitrate showed only slightly lower (+ nitrate) but no (? nitrate) NR activity. As for plants treated with nitrate, diurnal changes in (+ nitrate) NR activity were most pronounced in leaves of plants with fruit and this again was paralleled by a more pronounced diurnal variation in the carbohydrate concentration in the leaves. Increasing the oxygen level of the atmosphere to 50% led to a dramatic decrease in the (+ nitrate) NR activity and to an increase in both (? nitrate) NR activity and nitrate concentration, which was accompanied by decreasing carbohydrate contents of the leaves. Low light intensities and extended dark periods caused similar changes in NR activity and nitrate and carbohydrate concentrations in leaves. Increasing the nitrate concentration in the nutrient solution led to a rise in (+ nitrate) and (? nitrate) NR activity, but only the (? nitrate) NR activity paralleled the nitrate concentration in the leaves. This increase in the nitrate concentration was accompanied by a decrease in the carbohydrate content of the leaves. It is concluded that the level of and the diurnal changes in both (+ nitrate) and (? nitrate) NR activity and the concentration of nitrate in the leaves are dependent upon their carbohydrate status.  相似文献   

16.
17.
Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to dark treatment plus heat shock. The activity of Fe-SOD isoenzymes was most enhanced in heat-acclimated plants but was unaltered in the plants that received the dark treatment. Total CuZn-SOD activity was reduced in all treatments. Darkness had an inhibitory effect on the Mn-SOD isoenzyme activity, which was compensated by the effect of a rise in air temperature to 35 degrees C. These results show that the heat tolerance of tomatoplants may be increased by the previous imposition of a moderately high temperature and could be related with the thermal stability in the photochemical reactions and a readjustment of V(cmax) and J(max). Some isoenzymes, such as the Fe-SODs, may also play a role in the development of heat-shock tolerance through heat acclimation. In fact, the pattern found for these isoenzymes in heat-acclimated Amalia plants was similar to that previously described in other heat-tolerant tomato genotypes.  相似文献   

18.
Romanian populations of Norway spruce are induced to set terminal buds by four inductive cycles of 8 h light/16 h darkness. To distinguish between circadian and hourglass timekeeping for the photoperiodic control of budset, seedlings were raised in continuous light at 300 µmol m-2s-1 at 20°C for 10 weeks. They were then exposed to an extended night regime consisting of three cycles of 8 h light/40 h dark with 4-h or 1-h nightbreaks (120 µmol m-2s-1) applied to groups of plants at intervals during the extended night. Following a final cycle of 8 h light/16 h dark to maximize budset, the plants were transferred to continuous light. Budset was delayed when the night-break was applied close to the critical nightlength (CNL) of 6-7 h or about 22-23 h later in the extended night, consistent with circadian rather than hourglass timekeeping. Confidence intervals were calculated for the times to maximum effect of the night-breaks.  相似文献   

19.
The appearance and disappearance of NADH:nitrate reductase (NR) in the leaves of corn (Zea mays L. W64A × W182E) were studied using activity assays, an enzyme-linked immunosorbent assay (ELISA) and western blotting. N-starved, etiolated corn plants were treated with nutrients containing either 35 millimolar NH4-nitrate or K-nitrate and immediately thereafter given light. The curve for enhancement of NR activity had three phases: 1 hour lag, 5 hour rapid increase, and steady state. The pattern for NR protein, as measured with the ELISA, also had three phases, but the increase was more rapid and the steady state was established earlier. To differentiate the effects of N nutrition from those of light, N-starved etiolated plants were given N nutrients 4 hours before light. During the dark pretreatment, NR activity and protein increased. When the light was turned on the NR activity and protein increased very rapidly without a lag. Western blots of polyacrylamide gels of native and denatured crude extracts showed that NADH:NR polypeptide was absent prior to treatment with N nutrients, but appeared after nitrate was given in dark or light. A low level of NR activity was found in N-starved, etiolated plants and it was shown by western blotting to be an NR form with a different electrophoretic mobility in nondenaturing gels. Since this minor NR form was not influenced by either nitrate or light, it was designated a constitutive NR. Dark decay of NR activity and protein was also studied. After the plants which had been in light with N nutrients for 24 hours were transferred to dark, the NR activity dropped by 30% within 1 hour, but the NR protein did not decrease. This inactivation of NR was further supported by returning the plants to the light after 1.5 hours of dark and finding the activity restored without change in NR protein. After the initial activity drop, a parallel decrease in NR activity and protein was observed, which was likely due to irreversible degradation by proteolysis.  相似文献   

20.
Over a 24-h light-dark cycle, the level of mRNA coding for nitrate reductase (NR; EC 1.6.6.1) in the leaves of nitrate-fed Nicotiana tabacum L. plants increased throughout the night and then decreased until it was undetectable during the day. The amount of NR protein and NR activity were two-fold higher during the day than at night. When plants were transferred to continuous light conditions for 32 h, similar variations in NR gene expression, as judged by the above three parameters, still took place in leaf tissues. On the other hand, when plants were transferred to continuous dark conditions for 32 h, the NR-mRNA level continued to display the rhythmic fluctuations, while the amount of NR protein and NR activity decreased constantly, becoming very low, and showed no rhythmic variations. After 56 h of continuous darkness, the levels of NR mRNA, protein and activity in leaves all became negligible, and light reinduced them rapidly. These results indicate the circadian rhythmicity and light dependence of NR expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号