首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homoserine dehydrogenase (HSD) was partially purified from castor bean, pea and wheat seedlings. The enzyme from pea had a MW of 75 000 and no sensitivity to threonine when measured in the direction of homoserine formation (forward reaction). The enzyme purified from castor bean had a MW of 290 000–350 000 and exhibited an almost complete inhibition by 1 mM threonine. Furthermore, this enzyme exhibited a polymeric nature as shown by polyacrylamide electrophoresis of the desensitized preparation and by SDS electrophoresis of the native enzyme. In wheat two isoenzymes were separated by gel filtration on Sephadex G 200. The fast-moving fraction (HSD I) was completely inhibited by threonine and exhibited a MW of 280 000, while the slow-moving fraction (HSD II) was insensitive to threonine and had a MW of 75 000. The sensitive enzyme from wheat and castor bean showed an almost absolute requirement for K+. The enzyme from pea and the insensitive form from wheat did not show a requirement for K+. For the wheat enzyme the effect of several amino acids and the main kinetic constants were studied.  相似文献   

2.
3.
Characterization of ligand-induced states of maize homoserine dehydrogenase   总被引:1,自引:0,他引:1  
The threonine-sensitive homoserine dehydrogenase (L-homoserine: NAD(P)+ oxido-reductase), isolated from seedlings of Zea mays L., is characterized by variable kinetic and regulatory properties. Previous analysis of this enzyme suggested that it is capable of ligand-mediated interconversions among four kinetically distinct states (S. Krishnaswamy and J. K. Bryan (1983) Arch. Biochem. Biophys. 222, 449-463). These forms of the enzyme have been identified and found to differ in oligomeric configuration and conformation. In the presence of KCl and threonine a rapid equilibrium among three species of the enzyme (B, T, and K) is established. Each of these species can undergo a unique slow transition to a steady-state form under assay conditions. Results obtained from gel-filtration chromatography and sucrose density centrifugation indicate that the B and steady-state forms are tetramers and the T and K states are dimers. Evidence is presented to indicate that the rapid conversion from one dimeric species to the other can only occur via formation of the tetrameric B state. Chromatography under reacting-enzyme conditions provides direct support for the slow formation of a common steady-state species from any one of the other forms of the enzyme. The rate of transition is influenced by threonine, homoserine, NAD+, and, for transitions involving association reactions, by enzyme concentration. Small, reproducible differences in the apparent size of the T and K forms, and the B and steady-state species, are attributed to changes in conformation. This conclusion is supported by differential susceptibility of the enzymic states to proteolytic inactivation, by different rates of inactivation by dithio-bis-nitrobenzoate, and by alterations in their thermal stability. In addition, the B, T, and K states of the enzyme exhibit unique intrinsic fluorescence spectra. Spectral changes are shown to closely parallel changes in kinetic and hysteretic properties of the enzyme. The results of diverse methods of analysis are internally consistent, and provide considerable support for the conclusion that this pleiotropic regulatory enzyme can exist in any of several physically distinct states.  相似文献   

4.
The properties of homoserine dehydrogenase (EC 1.1.1.3) isolated from shoots of young etiolated seedlings of Zea mays L. var. earliking can be reversibly altered by dialysis against an appropriate buffer. Treatment with 500 millimolar potassium phosphate buffer (pH 7.5) in the absence of l-threonine results in diminished regulatory control such that the enzyme becomes less sensitive to feedback inhibition. The physical and regulatory properties of experimentally altered and unaltered enzymes are compared with those of enzyme isolated from shoots of older seedlings. Multiple forms of both sensitive and insensitive enzymes are identified, and a model which is consistent with the observed isozymes and the difference in regulatory properties of enzymes obtained from seedlings of different ages is proposed. The initially sensitive enzyme is postulated to undergo a conformational change followed by formation of insensitive multimeric aggregated forms. The experimental conditions which facilitate alteration of the enzyme are discussed in relation to conditions which could occur in vivo.  相似文献   

5.
Two forms of homoserine dehydrogenase exist in the leaves of both barley and pea; one has a large molecular weight and is inhibited by threonine, the other is of smaller molecular weight and insensitive to threonine but inhibited by cysteine. The subcellular localisation of these enzymes has been examined. Both plants have 60–65% of the total homoserine dehydrogenase activity present in the chloroplast and this activity is inhibited by threonine. The low molecular weight, threonine-insensitive form is present in the cytoplasm. Total homoserine dehydrogenase activity from barley leaves showed progressive desensitisation towards threonine with age in a similar manner to that previously described for maize. It was shown that the effect was due to desensitisation of the chloroplast enzyme, and not to an increase in the insensitive cytoplasm enzyme. No corresponding desensitisation to threonine was detected in pea leaves. The different forms of homoserine dehydrogenase could be separated from pea leaves by chromatography on Blue Sepharose; the threonine-sensitive enzyme passed straight through and the threonine insensitive form was bound. A similar separation of the barley leaf isoenzymes was obtained using Matrex Gel Red A affinity columns; in this case however, the threonine-sensitive isoenzyme was bound. In both plants, the threonine insensitive isoenzyme was subject to greater inhibition by cysteine than was the threonine-sensitive isoenzyme.Abbreviation HSDH homoserine dehydrogenase  相似文献   

6.
The threonine-sensitive homoserine dehydrogenase has been isolated and extensively purified from shoots of Zea mays L. var. earliking. This enzyme is shown to be hysteretic under certain conditions. Progress curves of the NAD-dependent reaction catalyzed by the maize enzyme can be characterized by distinct lags prior to achievement of steady state velocities, reflecting transitions from less active species to a more active steady state form of the enzyme. Incubation of the enzyme for 1 min at 25 degrees C prior to initiation of the reaction profoundly influences the properties of the less active enzyme and the nature of the subsequent slow transitions during assay. When the feedback modifier, L-threonine, or KCl is included in the preincubation mixture, the transitions involve biomolecular association reactions. In the absence of either ligand, or in the presence of an appropriate mixture of both, a unimolecular transition occurs during assay. Three unique preincubation states of the enzyme have been identified on the basis of their response to substrates and effectors; whereas, the kinetic and regulatory properties of the steady state form of the enzyme are independent of preincubation conditions. Steady state can thus be achieved by three different transitions. Each transition is retarded by threonine and favored by substrates and potassium, although the effects of these compounds differ quantitatively. Under the conditions tested, monovalent cations have no effect on the steady state velocity of the enzyme. A model describing the relationships among the four unique states of the enzyme which is consistent with the present results and supported by previous observations is proposed.  相似文献   

7.
We studied the organization of the antenna system of maize (Zea mays L.) seedlings grown under intermittent light conditions for 11 d. These plants had a higher chlorophyll-a/b ratio, a higher ratio of carotenoids to chlorophyll and a lower ratio of chlorophyll to protein than plants grown in continuous light. We found all chlorophyll-protein complexes of maize to be present. However, the minor chlorophyll a/b-proteins CP29 and CP26, and to a greater extent CP24 and the major light-harvesting complex II were reduced relative to the photosystem (PS) II core-complex. Also the chlorophyll a/b-antennae of PSI were reduced relative to the reaction-centre polypeptides. When isolated by flatbed isoelectrofocussing, the chlorophyll-a/b complexes of PSII showed a higher chlorophyll-a/b ratio and a lower ratio of chlorophyll to protein than the same complexes from continuous light; additionally, they bound more carotenoids per protein than the latter. Thus the altered organization of the photosynthetic apparatus of plants from intermittent light is caused by two different factors: (i) the altered stoichiometry of chlorophyll-binding proteins and (ii) a different ratio of pigment to protein within individual chlorophyll-proteins.Abbreviations Chl chlorophyll - CL continuous light - F fraction - HPLC high-performance liquid chromatography - IEF isoelectrofocussing - IL intermittent light - LHCII light-harvesting complex II - PAGE polyacrylamide-gel electrophoresis - Phe pheophytin - SDS sodium dodecyl sulfateThis work was supported by the grant no. 4.7240.90 from the Italian Ministry of Agriculture and Forestry. We thank Drs. R. Barbato (Dipartimento di Biologia, Padua, Italy) and Olivier Vallon (Institut de Biologie Physico-Chimique, Paris, France) for their gifts of antibodies, Drs. R. Barbato and P. Dainese (Dipartimento di Biologia, Padua, Italy) for fruitful discussion and Prof. G. Gennari (Dipartimento di Chimica fisica, Padua, Italy) for his assistance in recording the excitation spectra. J.M. was supported by a Stipendium from the Deutsche Forschungsgemeinschaft, which is gratefully acknowledged.  相似文献   

8.
9.
Summary Serratia marcescens Sa-3 possesses two homoserine dehydrogenases and neither has any aspartokinase activity unlike the case ofEs-cherichia coli enzymes. The two enzymes have been separated. One of them is active with either NAD or NADP+ and has been purified about 180-fold to homogeneity. This enzyme is completely repressed by the presence of 1mm methionine or homoserine in the growth medium, but its activity is unaffected by any amino acid of the aspartate family either singly or together. In many of its properties (such as pH optimum, Km for substrate and cofactors), it resembles its counterpart inE. coli K12. Potassium ions stabilize the enzyme but are not essential for activity. Its molecular weight is around 155,000 as determined by gel filtration and approximately 76,000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme has two subunits (polypeptide chains) in the molecule: 8m urea has no effect on enzyme activity. This enzyme represents approximately 30% of the total homoserine dehydrogenase activity ofS. marcescens unlike inSalmonella typhimurium andE. coli K12 where it is a minor or a negligible component.  相似文献   

10.
11.
To understand the effect of wounding stress on alcohol dehydrogenase(ADH, EC 1.1.1.1) in monocotyledonous and dicotyledonous plants, maize(Zea mays L.) and lettuce (Lactucasativa L.) seedlings were subjected to wounding stress and ADHactivity and abscisic acid (ABA) concentration were determined. In response tothe stress, the ADH activity in seedlings of both species increased rapidly asaresult of increased synthesis of the ADH. At 12 h after thestress,the activities in the wounded lettuce and maize seedlings, respectively,increased to 1.7- and 1.5-fold of that in non-stressed seedlings. Woundingstress also increased the concentration of endogenous ABA during the first 6h in both seedlings. The maximum increased levels of ABA in thelettuce and maize seedlings were 4.9- and 4.7-fold of that in the non-stressedseedlings, respectively.  相似文献   

12.
Monoclonal antibodies, highly specific for the threonine-sensitive isozyme of maize homoserine dehydrogenase, have been prepared and utilized to purify the enzyme to homogeneity. The results of one- and two-dimensional polyacrylamide gel electrophoresis under denaturing conditions indicate that the enzyme is composed of subunits of identical molecular weight. Apparent microheterogeneity of the subunits was observed during isoelectric focusing, but peptide maps generated by partial cleavage with three different chemical reagents did not reveal any differences among the proteins separated by isoelectric focusing. It is concluded that the subunits of the active dimeric and tetrameric configurations of the maize enzyme are identical or very similar. Evidence is presented which indicates that the enzyme purified by immunoaffinity chromatography retains all of the properties of freshly isolated enzyme, including the ability to undergo several ligand-induced slow transitions among four unique states and complex kinetic responses to physiological substrates. Two monoclonal antibodies are shown to interact differently with the purified enzyme. One, MC-11, reacts with all enzyme molecules, while the other, MC-3, is able to resolve two antigenically distinct subpopulations. These populations are present in approximately equal amounts in etiolated shoots and leaves of light-grown seedlings. However, the results of kinetic and hysteretic studies indicate that they are functionally indistinguishable. The antibodies appear to recognize a structural difference between the enzyme populations which does not result in detectable alterations in their catalytic or regulatory properties.  相似文献   

13.
The alcohol dehydrogenase (ADH) inactivator from aerobically grown rice (Oryza sativa) coleoptiles was shown to be associated with membranes which were recovered in sucrose gradients at peak density 1.13 grams per cubic centimeter. When Mg2+ was included in the gradient, the inactivator was recovered at peak density 1.16 grams per cubic centimeter coinciding with the marker enzyme for endoplasmic reticulum, antimycin A-insensitive NADH cytochrome c reductase. ADH was recovered exclusively in cytosol fractions. The inactivator attacks ADH from several plant sources and from yeast. There was no evidence for proteolysis when pure yeast ADH was inactivated by the inactivator, but there was a loss of SH groups from ADH during inactivation which was restored after incubation with dithiothreitol under denaturing conditions. The inactivator did not attack other SH enzymes tested but did result in loss of SH groups from glutathione and dithiothreitol which prevent ADH inactivation. When O2 was removed from the inactivator assay medium, the inactivation as well as the loss of SH groups from yeast ADH was significantly depressed.  相似文献   

14.
Homoserine dehydrogenase of Saccharomyces cerevisiae has been rapidly purified to homogeneity by heat and acid treatments, ammonium sulfate fractionation, and chromatography on Matrex Gel Red A and Q-Sepharose columns. The final preparation migrated as a single entity upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr of 40,000. The Mr of the native enzyme was 81,000 as determined by gel filtration, suggesting that the enzyme is composed of two identical subunits. This feature was also confirmed by cross-linking analysis using the bifunctional reagent dimethyl suberimidate. Feedback inhibition by L-methionine and L-threonine was observed using the purified enzyme. The enzyme was markedly stabilized against heat treatment at high salt concentrations. Additions of feedback inhibitors or high concentrations of salts failed to cause any dissociation or aggregation of the enzyme subunits unlike enzymes from other sources such as Rhodospirillum rubrum. The enzyme denatured in 3 M guanidine-HCl was refolded by simple dilution with a concomitant restoration of the activity. Cross-linking analysis of the renaturation process suggested that the formation of the dimer is required for activity expression. Amino acid sequence analysis of peptides obtained by digestion of the enzyme protein with Achromobacter lyticus protease I revealed that several amino acid residues are strictly conserved among homoserine dehydrogenases from S. cerevisiae, Escherichia coli, and Bacillus subtilis.  相似文献   

15.
16.
Mitochondria isolated from shoots of 2 days, light- and dark-grown winter wheat (Triticum aestivum L. cv. Rideau) seedlings oxidize alpha-ketoglutarate and l-malate with good respiratory control and ADP: O ratios. The efficiency of oxidative phosphorylation, and respiratory control are both reduced significantly when succinate or NADH is employed as substrate. Respiratory control values and ADP: O ratios show a general decline in mitochondria from seedlings of increasing age, whether grown in light or dark. In light-grown seedlings, the decrease in respiratory control with aging is due principally to a decrease in the rate of state 3 respiration, while in dark-grown material, the decrease appears to be due mainly to an increased rate of state 4 respiration. In both light- and dark-grown seedlings, oxygen consumption during state 3 respiration is severely inhibited by oligomycin. During state 4 respiration, 2,4-dinitrophenol stimulates oxygen uptake to a level approximately two-thirds the normal ADP-stimulated rate.  相似文献   

17.
18.
The effects of brassinolide, uniconazole and methyl jasmonate on the antioxidant system were studied in seedlings of drought-resistant (PAN 6043) and drought-sensitive (SC 701) cultivars of Zea mays L. When seedlings treated with the three regulators were subjected to water stress (–1.0 MPa PEG 6000 solution), the activities of superoxide dismutase, catalase and ascorbate peroxidase, as well as the ascorbic acid and total carotenoid contents, increased in the resistant cultivar, whereas the levels remained unaltered in the sensitive cultivar. The increased tolerance to drought stress induced by the growth regulators in the resistant cultivar seems to be due to the maintenance of increased antioxidant enzyme activity and antioxidant substance levels.  相似文献   

19.
NADH specific glutamate dehydrogenase (GDH) activity was examined in roots and shoots of maize seedlings grown in half-strength Hoagland’s solution containing NH4NO3 as sole nitrogen source under irradiance of 60 W m−2 and temperature of 25±2°C. When 5,5′-dithio-bis (2-nitrobenzoic acid) (DTNB) was supplied to the assay mixture, it inhibited NADH-GDH activity in both roots and shoots, irrespective of whether the enzymes were extracted from light- or dark-treated roots and shoots. In each case the inhibition increased with the increase in DTNB concentration. At the maximum concentration of DTNB used (20 μM) the inhibition of shoot NADH-GDH was more pronounced than inhibition of root enzyme. This indicated differences in shoot and root NADH-GDH.  相似文献   

20.
Enzymatic activity of beta-N-acetyhexosaminidase (EC 3.2.1.52) was analysed in seeds and young seedings of maize (Zea mays) using di-N-acetylchitobiose as a substrate. Substantial activity was detected in dry seeds. Activity increased before germination (48 h) but exclusively in the embryo. In seedlings, most of the activity was found in the scutellum, and lower levels in shoots and roots immediately after germination. An isoform of the enzyme was purified from scutellum (72 h after the start of imbibition) by heat treatment of crude extract and four steps of chromatography. Purified beta-N-acetyl-hexosaminidase showed a single band on SDS-PAGE of around 70 kDa. This was almost the same as the molecular weight estimated by size exclusion chromatography, indicating a monomeric form of the active enzyme. The relative activity of the enzyme for di-N-acetylchitobiose was about 15 times greater than that for p-nitrophenyl-N-acetylglucosaminide or p-nitrophenyl-N-acetylgalactosaminide. Analysis of the reaction with oligo-N-acetylchitooliogsaccharides [(GlcNAc)n] revealed an exotype enzyme producing predominantly (GlcNAc)n-1 and N-acetylglucosamine. The optimum pH, temperature, and isoelectric point (pl) were 4.5, 55 degrees C, and 6.75, respectively. The activity was almost completely inhibited in the presence of 5 mmol/L Ag+, Hg2+, or Fe3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号