首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To gain insight into the evolution of the methionine biosynthesis pathway, in vivo complementation tests were performed. The substrate specificity of three enzymes that intrinsically use different homoserine-esterified substrates and have different sulfur assimilation pathways was examined: two cystathionine gamma-synthases (the Escherichia coli enzyme that naturally utilizes O-succinylhomoserine [OSH]) and the Arabidopsis thaliana enzyme that naturally exploits O-phosphohomoserine [OPH]. Both of these act through the transsulfuration pathway. The third enzyme investigated was O-acetylhomoserine (OAH) sulfhydrylase of Leptospira meyeri, representing the enzyme that utilizes OAH and operates through the direct sulfhydrylation pathway. All the three enzymes were able to utilize OSH and OAH as substrates, with different degrees of efficiency, but only the plant enzyme was able to utilize OPH as a substrate. In addition to their inherent activity in the transsulfuration pathway, the two cystathionine gamma-synthases were also capable of acting in the direct sulfhydrylation pathway. Based on the phylogenic tree and the results of the complementation tests, we suggest that the ancestral gene was able to act as OAH or OSH sulfhydrylase. In some bacteria and plants, this ancient enzyme most probably evolved into a cystathionine gamma-synthase, thereby maintaining the ability to utilize various homoserine-esterified substrates, as well as various sulfur sources, and thus keeping the multisubstrate specificity of its ancestor. In some organisms, this ancestral gene probably underwent a duplication event, which resulted in a cystathionine gamma-synthase and a separate OAH or OSH sulfhydrylase. This led to the development of two parallel pathways of methionine biosynthesis, transsulfuration and direct sulfhydrylation, in these organisms. Although both pathways exist in several organisms, most seem to favor a single specific pathway for methionine biosynthesis in vivo.  相似文献   

3.
A cell extract of an extremely thermophilic bacterium, Thermus thermophilus HB8, cultured in a synthetic medium catalyzed cystathionine gamma-synthesis with O-acetyl-L-homoserine and L-cysteine as substrates but not beta-synthesis with DL-homocysteine and L-serine (or O-acetyl-L-serine). The amounts of synthesized enzymes metabolizing sulfur-containing amino acids were estimated by determining their catalytic activities in cell extracts. The syntheses of cystathionine beta-lyase (EC 4.4.1.8) and O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8) were markedly repressed by L-methionine supplemented to the medium. L-Cysteine and glutathione, both at 0.5 mM, added to the medium as the sole sulfur source repressed the synthesis of O-acetylserine sulfhydrylase by 55 and 73%, respectively, confirming that this enzyme functions as a cysteine synthase. Methionine employed at 1 to 5 mM in the same way derepressed the synthesis of O-acetylserine sulfhydrylase 2.1- to 2.5-fold. A method for assaying a low concentration of sulfide (0.01 to 0.05 mM) liberated from homocysteine by determining cysteine synthesized with it in the presence of excess amounts of O-acetylserine and a purified preparation of the sulfhydrylase was established. The extract of cells catalyzed the homocysteine gamma-lyase reaction, with a specific activity of 5 to 7 nmol/min/mg of protein, but not the methionine gamma-lyase reaction. These results suggested that cysteine was also synthesized under the conditions employed by the catalysis of O-acetylserine sulfhydrylase using sulfur of homocysteine derived from methionine. Methionine inhibited O-acetylserine sulfhydrylase markedly. The effects of sulfur sources added to the medium on the synthesis of O-acetylhomoserine sulfhydrylase and the inhibition of the enzyme activity by methionine were mostly understood by assuming that the organism has two proteins having O-acetylhomoserine sulfhydrylase activity, one of which is cystathionine gamma-synthase. Although it has been reported that homocysteine is directly synthesized in T. thermophilus HB27 by the catalysis of O-acetylhomoserine sulfhydrylase on the basis of genetic studies (T. Kosuge, D. Gao, and T. Hoshino, J. Biosci. Bioeng. 90:271-279, 2000), the results obtained in this study for the behaviors of related enzymes indicate that sulfur is first incorporated into cysteine and then transferred to homocysteine via cystathionine in T. thermophilus HB8.  相似文献   

4.
Datko AH  Mudd SH 《Plant physiology》1982,69(5):1070-1076
A search was made for compounds that would inhibit methionine biosynthesis in Lemna paucicostata Hegelm. 6746. dl-Propargylglycine (0.15 micromolar) produced growth inhibition and morphological changes which were prevented by exogenous methionine. Also, dl-propargylglycine inhibits cystathionine gamma-synthase activity. l-Aminoethoxyvinylglycine (0.05 micromolar) produced growth inhibition and morphological changes partially preventable by exogenous methionine. l-Aminoethoxyvinylglycine impairs the cleavage of cystathionine to homocysteine. Lysine and threonine, at concentrations which individually had little effect on growth or morphology of Lemna, together produced growth inhibition and morphological changes preventable by exogenous methionine. The resulting metabolic block prevented conversion of cysteine to cystathionine, presumably secondary to depletion of the supply of O-phosphohomoserine.Inhibition of Lemna growth resulted when the molybdate:sulfate ratio in the medium was increased to 20:1 or more. Such inhibition was prevented by lowering this ratio to 0.3 or less. A non-steady-state experiment (molybdate:sulfate, 20:1) showed that molybdate inhibited sulfate uptake, but it provided no evidence of a further impairment in the organification of sulfate. Molybdate-induced growth inhibition of Lemna was prevented by cystine but not by cystathionine or methionine. Cystathionine is not converted by Lemna to cysteine rapidly enough to sustain growth.  相似文献   

5.
Cysteine and methionine biosynthesis was studied in Pseudomonas putida S-313 and Pseudomonas aeruginosa PAO1. Both these organisms used direct sulfhydrylation of O-succinylhomoserine for the synthesis of methionine but also contained substantial levels of O-acetylserine sulfhydrylase (cysteine synthase) activity. The enzymes of the transsulfuration pathway (cystathionine gamma-synthase and cystathionine beta-lyase) were expressed at low levels in both pseudomonads but were strongly upregulated during growth with cysteine as the sole sulfur source. In P. aeruginosa, the reverse transsulfuration pathway between homocysteine and cysteine, with cystathionine as the intermediate, allows P. aeruginosa to grow rapidly with methionine as the sole sulfur source. P. putida S-313 also grew well with methionine as the sulfur source, but no cystathionine gamma-lyase, the key enzyme of the reverse transsulfuration pathway, was found in this species. In the absence of the reverse transsulfuration pathway, P. putida desulfurized methionine by the conversion of methionine to methanethiol, catalyzed by methionine gamma-lyase, which was upregulated under these conditions. A transposon mutant of P. putida that was defective in the alkanesulfonatase locus (ssuD) was unable to grow with either methanesulfonate or methionine as the sulfur source. We therefore propose that in P. putida methionine is converted to methanethiol and then oxidized to methanesulfonate. The sulfonate is then desulfonated by alkanesulfonatase to release sulfite for reassimilation into cysteine.  相似文献   

6.
A DNA fragment containing the Saccharomyces cerevisiae CYS3 (CYI1) gene was cloned. The clone had a single open reading frame of 1,182 bp (394 amino acid residues). By comparison of the deduced amino acid sequence with the N-terminal amino acid sequence of cystathionine gamma-lyase, CYS3 (CYI1) was concluded to be the structural gene for this enzyme. In addition, the deduced sequence showed homology with the following enzymes: rat cystathionine gamma-lyase (41%), Escherichia coli cystathionine gamma-synthase (36%), and cystathionine beta-lyase (25%). The N-terminal half of it was homologous (39%) with the N-terminal half of S. cerevisiae O-acetylserine and O-acetylhomoserine sulfhydrylase. The cloned CYS3 (CYI1) gene marginally complemented the E. coli metB mutation (cystathionine gamma-synthase deficiency) and conferred cystathionine gamma-synthase activity as well as cystathionine gamma-lyase activity to E. coli; cystathionine gamma-synthase activity was detected when O-succinylhomoserine but not O-acetylhomoserine was used as substrate. We therefore conclude that S. cerevisiae cystathionine gamma-lyase and E. coli cystathionine gamma-synthase are homologous in both structure and in vitro function and propose that their different in vivo functions are due to the unavailability of O-succinylhomoserine in S. cerevisiae and the scarceness of cystathionine in E. coli.  相似文献   

7.
Four strains of wine yeasts of two different species (Saccharomyces cerevisiae var. ellipsoideus and Saccharomyces bayanus) were investigated with respect to the influence of various sulfur compounds on the formation of O-acetylserine sulfhydrylase, O-acetylhomoserine sulfhydrylase and serine sulfhydrase. The specific enzyme activities were followed over a growth period of 96 h.In the presence of sulfate, sulfite and djencolic acid during exponential growth, a moderate increase of O-acetylserine sulfhydrylase and O-acetylhomoserine sulfhydrylase activities was recognized. In three strains cysteine and methionine prevented this derepression. At the end of the exponential growth phase, biosynthesis of these two enzymes was suppressed again. Serine sulfhydrase showed a modified regulation which indicates that its synthesis and the synthesis of O-acetylserine and O-acetylhomoserine sulfhydrylases are not coordinated.Abbreviations OAS O-acetylserine - OAHS O-acetylhomoserine  相似文献   

8.
A gene (cgs) encoding cystathionine gamma-synthase was cloned from Streptococcus anginosus, and its protein was purified and characterized. The cgs gene and the immediately downstream lcd gene were shown to be cotranscribed as an operon. High-performance liquid chromatography analyses showed that the S. anginosus Cgs not only has cystathionine gamma-synthase activity, but also expresses O-acetylhomoserine sulfhydrylase activity. These results suggest that S. anginosus has the capacity to utilize both the transsulfuration and direct sulfhydrylation pathways for homocysteine biosynthesis.  相似文献   

9.
Two pathways for cysteine biosynthesis are known in nature; however, it is not known which, if either, the Archaea utilize. Enzyme activities in extracts of Methanosarcina thermophila grown with combinations of cysteine and sulfide as sulfur sources indicated that this archaeon utilizes the pathway found in the Bacteria domain. The genes encoding serine transacetylase and O-acetylserine sulfhydrylase (cysE and cysK) are adjacent on the chromosome of M. thermophila and possibly form an operon. When M. thermophila is grown with cysteine as the sole sulfur source, O-acetylserine sulfhydrylase activity is maximally expressed suggesting alternative roles for this enzyme apart from cysteine biosynthesis.  相似文献   

10.
This work proposes a model of the metabolic branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana which involves kinetic competition for phosphohomoserine between the allosteric enzyme threonine synthase and the two-substrate enzyme cystathionine gamma-synthase. Threonine synthase is activated by S-adenosylmethionine and inhibited by AMP. Cystathionine gamma-synthase condenses phosphohomoserine to cysteine via a ping-pong mechanism. Reactions are irreversible and inhibited by inorganic phosphate. The modelling procedure included an examination of the kinetic links, the determination of the operating conditions in chloroplasts and the establishment of a computer model using the enzyme rate equations. To test the model, the branch-point was reconstituted with purified enzymes. The computer model showed a partial agreement with the in vitro results. The model was subsequently improved and was then found consistent with flux partition in vitro and in vivo. Under near physiological conditions, S-adenosylmethionine, but not AMP, modulates the partition of a steady-state flux of phosphohomoserine. The computer model indicates a high sensitivity of cystathionine flux to enzyme and S-adenosylmethionine concentrations. Cystathionine flux is sensitive to modulation of threonine flux whereas the reverse is not true. The cystathionine gamma-synthase kinetic mechanism favours a low sensitivity of the fluxes to cysteine. Though sensitivity to inorganic phosphate is low, its concentration conditions the dynamics of the system. Threonine synthase and cystathionine gamma-synthase display similar kinetic efficiencies in the metabolic context considered and are first-order for the phosphohomoserine substrate. Under these conditions outflows are coordinated.  相似文献   

11.
Propargylglycine, vinylglycine, and cysteine each cause irreversible inactivations of cystathionine γ-synthase (and, in parallel, of O-phosphohomoserine sulfhydrylase) activities in crude extracts of Lemna paucicostata. Inactivation by propargylglycine or vinylglycine is completely prevented by 40 millimolar O-phospho- or O-succinyl-l-homoserine; that by cysteine is only partially prevented. Propargylglycine (PAG), the most potent of these inhibitors, causes rapid and drastic inactivation of both activities in intact Lemna. Studies of plants growing in steady states in the presence of various concentrations (0-150 nanomolar) of PAG showed that 16% of control activity is necessary and sufficient to maintain normal rates of growth and methionine biosynthesis, and that 10% of control activity is essential for viability. Addition of either 2 micromolar methionine or 31 micromolar cystine to growth medium containing 150 nanomolar PAG permits growth at 75 to 100% of control rates when enzyme activity is less than 10% of control. Whereas methionine presumably rescues by directly providing the missing metabolite, cystine may rescue by enhancing substrate accumulation and thereby promoting flux through residual cystathionine γ-synthase. The results indicate that the down-regulation of cystathionine γ-synthase to 15% of control which occurs when plants are grown in 2 micromolar methionine (Thompson, Datko, Mudd, Giovanelli Plant Physiol 69: 1077-1083), by itself, is not sufficient to reduce the rate of methionine biosynthesis.  相似文献   

12.
13.
Cystathionine gamma-synthase catalyses the committed step of de novo methionine biosynthesis in micro-organisms and plants, making the enzyme an attractive target for the design of new antibiotics and herbicides. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum has been solved by Patterson search techniques using the structure of Escherichia coli cystathionine gamma-synthase. The model was refined at 2.9 A resolution to a crystallographic R -factor of 20.1 % (Rfree25.0 %). The physiological substrates of the enzyme, L-homoserine phosphate and L-cysteine, were modelled into the unliganded structure. These complexes support the proposed ping-pong mechanism for catalysis and illustrate the dissimilar substrate specificities of bacterial and plant cystathionine gamma-synthases on a molecular level. The main difference arises from the binding modes of the distal substrate groups (O -acetyl/succinyl versusO -phosphate). Central in fixing the distal phosphate of the plant CGS substrate is an exposed lysine residue that is strictly conserved in plant cystathionine gamma-synthases whereas bacterial enzymes carry a glycine residue at this position. General insight regarding the reaction specificity of transsulphuration enzymes is gained by the comparison to cystathionine beta-lyase from E. coli, indicating the mechanistic importance of a second substrate binding site for L-cysteine which leads to different chemical reaction types.  相似文献   

14.
Cystathionine synthesis from O-acetylhomoserine and cysteine has been demonstrated in yeast extracts for the first time. The activity is less than that of O-acetylhomoserine sulfhydrylase, but it is higher than that reported for homoserine O-transacetylase and therefore should not be growth limiting. Cystathionine synthase seems to share the regulatory properties of the sulfhydrylase, and both activities are missing from the methionine auxotroph Saccharomyces cerevisiae EY9, suggesting that both reactions are catalyzed by the same enzyme. However, cystathionine synthase activity was lost during purification of the sulfhydrylase, suggesting that the two reactions may be catalyzed by separate enzymes. Since previous studies have shown that yeast extracts can catalyze the cleavage of cystathionine to homocysteine, our results show the existence of two complete alternate pathways for homocysteine biosynthesis in yeast. Which of these is the major physiological pathway remains to be determined.  相似文献   

15.
An enzyme that can synthesize O-alkylhomoserine from alcohols and O-acetylhomoserine was purified from Corynebacterium acetophilum. The enzyme was found to be identical to O-acetylhomoserine sulfhydrylase; a preparation that appeared homogeneous on polyacrylamide gel electrophoresis showed both O-alkylhomoserine-synthesizing and O-acetylhomoserine sulfhydrylase activities. Its molecular weight was determined to be about 220,000, and it consisted of two subunits. Its pH and temperature optima for the two reactions were the same. Besides catalyzing the formation of homocysteine from O-acetylhomoserine and sulfide, it also catalyzed the syntheses of O-alkylhomoserines corresponding to the alcohols added form O-acetylhomoserine and ethyl alcohol, n-propylalcohol, n-butyl alcohol, methyl alcohol, and n-pentyl alcohol, its activities with these alcohols decreasing in that order. L-Homoserine, O-succinylhomoserine, and O-acetylserine reacted with sulfide. O-ethylhomoserine, O-acetylthreonine, O-succinylhomoserine, and O-acetylserine inhibited both enzyme activities. O-acetylhomoserine sulfhydrylase purified from Saccharomyces cerevisiae also showed O-alkylhomoserine-synthesizing activity. Thus, O-acetylhomoserine sulfhydrylase seems to catalyze O-alkylhomoserine synthesis in the presence of appropriate concentrations of alcohol and O-acetylhomoserine in microorganisms.  相似文献   

16.
1. Serine transacetylase, O-acetylserine sulphydrylase and beta-cystathionase were purified from Paracoccus denitrificans strain 8944. 2. Serin transacetylase was purified 150-fold. The enzyme has a pH optimum between 7.5 and 8.0, is specific for L-serine and is inhibited by sulphydryl-group reagents. The apparent Km values for serine and acetyl-CoA are 4.0 - 10(-4) and 1.0 - 10(-4) M, respectively. Serine transacetylase is strongly inhibited by cysteine. 3. O-Acetylserine sulphydrylase was purified 450-fold. The enzymes has a sharp pH optimum at pH 7.5. In addition to catalysing the synthesis of cysteine, O-acetylserine sulphydrylase catalyses the synthesis of selenocysteine from O-acetylserine and selenide. The Km values for sulphide and O-acetylserine are 2.7 - 10(-3) and 1.25 - 10(-3) M, respectively. The enzyme was stimulated by pyridoxal phosphate and was inhibited by cystathionine, homocysteine and methionine. 4. beta-Cystathionase was purified approx. 50-fold. beta-Cystathionase has a pH optimum between pH 9.0 and 9.5, is sensitive to sulphydryl-group reagents, required pyridoxal phosphate for maximum activity and has an apparent Km for cystathionine of 4.2 - 10 (-3) M. beta-Cystathionase also catalyses the release of keto acid from lanthionine, djenkolic acid and cystine. Cysteine, O-acetylserine, homocysteine and glutathione strongly inhibit beta-cystathionase activity and homocysteine and methionine represses enzyme activity. 5. O-Acetylserine lyase was identified in crude extracts of Paracoccus denitrificans. The enzyme is specific for O-acetyl-L-serine, requires pyridoxal phosphate and is inhibied by KCN and hydroxylamine. The enzyme has a high Km value for O-acetylserine (50--100 mM).  相似文献   

17.
Cystathionine gamma-synthase, the enzyme catalysing the first reaction specific for methionine biosynthesis, has been cloned from Nicotiana tabacum, overexpressed in Escherichia coli and purified to homogeneity. The recombinant cystathionine gamma-synthase catalyses the pyridoxal 5'-phosphate dependent formation of L-cystathionine from L-homoserine phosphate and L-cysteine with apparent Km-values of 7.1+/-3.1 mM and of 0.23+/-0.07 mM, respectively. The enzyme was irreversibly inhibited by DL-propargylglycine (Ki = 18 microM, k(inact) = 0.56 min(-1)), while the homoserine phosphate analogues 3-(phosphonomethyl)pyridine-2-carboxylic acid, 4-(phosphonomethyl)pyridine-2-carboxylic acid, Z-3-(2-phosphonoethen-1-yl)pyridine-2-carboxylic acid, and DL-E-2-amino-5-phosphono-3-pentenoic acid acted as reversible competitive inhibitors with Ki values of 0.20, 0.30, 0.45, and 0.027 mM, respectively. In combination these results suggest a ping-pong mechanism for the cystathionine gamma-synthase reaction, with homoserine phosphate binding to the enzyme first. Large single crystals of cystathionine gamma-synthase diffracting to beyond 2.7 A resolution were obtained by the sitting drop vapour diffusion method. The crystals belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell constants a = 120.0 A, b = 129.5 A, c = 309.8 A, corresponding to two tetramers per asymmetric unit.  相似文献   

18.
19.
S-Adenosylmethionine greatly stimulates the formation of threonine from O-phosphohomoserine by an enzyme from sugar beet leaves. The stimulation due to S-adenosylmethionine is inhibited by cysteine. Cysteine and O-phosphohomoserine are incorporated into cystathionine by another enzyme. The results suggest that the conversion of O-phosphohomoserine to either threonine or cystathionine is regulated by the relative amounts of cysteine and S-adenosylmethionine present.  相似文献   

20.
In higher plants, O-phosphohomoserine (OPH) represents a branch point between the methionine (Met) and threonine (Thr) biosynthetic pathways. It is believed that the enzymes Thr synthase (TS) and cystathionine gamma-synthase (CGS) actively compete for the OPH substrate for Thr and Met biosynthesis, respectively. We have isolated a mutant of Arabidopsis, designated mto2-1, that over-accumulates soluble Met 22-fold and contains markedly reduced levels of soluble Thr in young rosettes. The mto2-1 mutant carries a single base pair mutation within the gene encoding TS, resulting in a leucine-204 to arginine change. Accumulation of TS mRNA and protein was normal in young rosettes of mto2-1, whereas functional complementation analysis of an Escherichia coli thrC mutation suggested that the ability of mto2-1 TS to synthesize Thr is impaired. We concluded that the mutation within the TS gene is responsible for the mto2-1 phenotype, resulting in decreased Thr biosynthesis and a channeling of OPH to Met biosynthesis in young rosettes. Analysis of the mto2-1 mutant suggested that, in vivo, the feedback regulation of CGS is not sufficient alone for the control of Met biosynthesis in young rosettes and is dependent on TS activity. In addition, developmental analysis of soluble Met and Thr concentrations indicated that the accumulation of these amino acids is regulated in a temporal and spatial manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号