首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extract from 8-day-old cotton ovules (Gossypium hirsutum L.) was partitioned into three fractions and each fraction was derivatized and analyzed separately. Gas-liquid chromatography and computer-controlled gas-liquid chromatography-mass spectrometry were used to separate, measure, and identify the naturally occurring plant hormones. A single extract contained abscisic acid, indoleacetic acid, and gibberellins A(1), A(3), A(4), A(7), A(9), and A(13) in the first fraction; ethyl indole-3-acetate and indole-3-aldehyde in the second fraction; and the cytokinins 6-(3-methyl-4-hydroxybutylamino)purine (dihydrozeatin), 6-(4-hydroxy-3-methyl-2-trans-butenylamino) purine (zeatin), 6-(3-methyl-2-butenylamino)purine(2iP), 6-(3-methyl-2-butenylamino)-9-beta-d-ribofuranosylpurine(2iPA), and 6-(4-hydroxy-3-methyl-2-trans-butenylamino)-9-beta-d- ribofuranosylpurine (zeatin riboside) in the third fraction.  相似文献   

2.
Cytokinin-active ribonucleosides have been isolated from tRNA of whole spinach (Spinacia oleracea L.) leaves and isolated spinach chloroplasts. The tRNA from spinach leaf blades contained: 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine (cis and trans isomers), 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (cis and trans isomers). A method for isolation of large amounts of intact chloroplasts was developed and subsequently used for the isolation of chloroplast tRNA. The chloroplast tRNA contained 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (the cis isomer only). The structures of these compounds were assigned on the basis of their chromatographic properties and mass spectra of trimethylsilyl derivatives which were identical with those of the corresponding synthetic compounds. The results of this study indicate that ribosylzeatin was present in spinach leaf tRNA, but absent from the purified chloroplast tRNA preparation.  相似文献   

3.
S Swaminathan  R M Bock 《Biochemistry》1977,16(7):1355-1360
Three ribonucleosides responsible for cytokinin activity in Euglena gracilis var Bacillaris tRNA have been isolated and identified as 6-(3-methyl-2-butenylamino)-9-beta-D-ribofuranosylpurine, 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9-beta-D-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-beta-D-ribofuranosylpurine. The structures of these compounds were assigned on the basis of their chromatographic properties and ultraviolet and mass spectra which were identical with those of the corresponding synthetic compounds. The elution profiles of cytokinin bioassay activity and of 35S radioactivity suggest the presence of a trace amount of 6-(3-methyl-2-butenylamino)-2-methylthio-9-beta-D-ribofuranosylpurine.  相似文献   

4.
The antisenescent activity of naturally occurring cytokinins (bases and ribosides) has been evaluated by measuring chlorophyll retention in detached wheat (Triticum vulgare) leaf segments. 6-(3-Methyl-2-butenylamino)-2-methylthiopurine (ms2ip) was the most active cytokinin followed by 6-(4-hydroxy-3-methyl-trans-2-butenylamino)purine (tZ). 6-(4-Hydroxy-3-methyl-cis-2-butenylamino)-9-β-D-ribofuranosylpurine (cZR), 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-2-methylthio-9β-D-ribofuranosylpurine (MstZR), and 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-2-methylthio-9-β-D-ribofuroanosylpurine (mscZR) were essentially inactive. 9-Ribosyl substitution did not affect the activity of tZ, (±)-6-(4-hydroxy-3-methylbutylamino)purine (DHZ), or 6-(3-methyl-2-butenylamino)purine (2ip), but lowered the activity of 6-(o-hydroxybenzylamino)purine (OHBA) and 6-(4-hydroxy-3-methyl-cis-2-butenylamino)purine (cZ). 2-Methylthio substitution increased the activity of 2ip and DHZ, decreased the activity of tZ, and had no effect on the activity of cZ. The activities of the simultaneously substituted 2-methylthio-9-ribosyl compounds are lower than those of their corresponding unsubstituted or 2-methylthio substituted bases with the exception of DHZ. Structure-activity relationships for chlorophyll retention did not parallel many of the relationships found for callus tissue growth stimulation.  相似文献   

5.
A compound was isolated from potato (Solanum tuberosum L. cv Bintje) tuber sprouts by immunoaffinity chromatography with antibodies against the cytokinins zeatin riboside and isopentenyladenosine. Analysis by ultraviolet spectroscopy and gas chromatography-mass spectrometry of derivatives identified the compound as a 9-glucoside of 6-[(Z)-4-hydroxy-3-methyl-2-butenylamino]purine (cis-zeatin). N-glucosides have often been reported as metabolites of other cytokinins, but to our knowledge, they have never before been found for cis-zeatin. The finding gives proof that cis-zeatin, a modified base in tRNA, also exists as a free substance in plants, since the glucoside, unlike other tRNA-free cis-zeatins described earlier by others, cannot arise by enzymatic degradation of tRNA during plant extraction.  相似文献   

6.
In addition to the four cytokinins, 6-(3-methyl-2-butenylamino)purine, 6-methylaminopurine and the cis and trans isomers of 6-(4-hydroxy-3-methyl-2-butenylamino)purine, reported earlier from our laboratories, three cytokinin-active fractions have been obtained from the aqueous medium of 6-day-old Corynebacterium fascians cultures. One of these has been identified as 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-2-methylthiopurine (2-methylthio-cis-zeatin, c-ms2io6 Ade).  相似文献   

7.
W. J. Burrows 《Planta》1976,130(3):313-316
Summary The tRNA from cytokinin-dependent tobacco callus (Nicotiana tabacum) grown on mineral medium containing N,N-diphenylurea as the source of cytokinin was found to contain 3 cytokinin-active ribonucleosides. The 2 ribonucleosides present in the largest amounts were identified conclusively by their chromatographic properties, ultra-violet and low-resolution mass spectra as the naturally-occurring cytokinins 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9--D-ribofuranosylpurine and 6-(3-methyl-2-butenylamino)-9--ribofuranosylpurine. A third ribonucleoside, present in smaller amounts, was identified as another naturally-occurring cytokinin 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9--D-ribofuranosylpurine on the basis of its chromatographic behaviour. No evidence was found to associate the mode of action of the non-purine cytokinin, N,N-diphenylurea, with tRNA.Abbreviation DPU N,N-diphenylurea  相似文献   

8.
Cytokinin activities in the tobacco bioassay have been determined for four adenosine derivatives known to be components of wheat germ tRNA: 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, 6-(4-hydroxy-3-methyl-2-butenylamino)- 2-methylthio-9-β-d-ribofuranosylpurine, and 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-d-ribofuranosylpurine. Also determined and compared with the four natural components of tRNA were the activities of the four 3-methylbutylamino analogs of the naturally occurring species and the eight substituted purines corresponding to both sets of ribonucleosides. The systematic structural modifications within this group of sixteen compounds were reflected in the variations in cytokinin activity with the level of modification.  相似文献   

9.
The biosynthesis of cytokinins was examined in pea (Pisum sativum L.) plant organs and carrot (Daucus carota L.) root tissues. When pea roots, stems, and leaves were grown separately for three weeks on a culture medium containing [8-14C]adenine without an exogenous supply of cytokinin and auxin, radioactive cytokinins were synthesized by each of these organs. Incubation of carrot root cambium and noncambium tissues for three days in a liquid culture medium containing [8-14C]adenine without cytokinin demonstrates that radioactive cytokinins were synthesized in the cambium but not in the noncambium tissue preparation. The radioactive cytokinins extracted from each of these tissues were analyzed by Sephadex LH-20 columns, reverse phase high pressure liquid chromatography, paper chromatography in various solvent systems, and paper electrophoresis. The main species of cytokinins detectable by these methods are N6-(Δ2-isopentyl_adenine-5′-monophosphate, 6-(4-hydroxy-3-methyl-2-butenyl-amino)-9-β-ribofuranosylpurine-5′- monophosphate, N6-(Δ2-isopentenyl)adenosine, 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-ribofuranosylpurine, N6-(Δ2-isopentenyl)adenine, and 6-(4-hydroxy-3-methyl-2-butenylamino)purine. On the basis of the amounts of cytokinin synthesized per gram fresh tissues, these results indicate that the root is the major site, but not the only site, of cytokinin biosynthesis. Furthermore, cambium and possibly all actively dividing tissues are responsible for the synthesis of this group of plant hormones.  相似文献   

10.
Biosynthesis of cytokinin in shoots was examined by growing rootless tobacco (Nicotiana tabacum) plants in vitro. The rootless plants were originated by culturing tobacco callus on a high cytokinin-low auxin medium to induce the formation of plantlets which were then grown on medium without exogenous cytokinin and auxin. The rootless plants supplied with [(14)C]adenine synthesized ethanol-ethyl acetate-water-soluble radioactive components, portions of which had the same chromatographic and electrophoretic mobilities as N(6)-(Delta(2)-isopentenyl)adenine, N(6)-(Delta(2)-isopentenyl)adenosine, 6-(4-hydroxy-3-methyl-2-butenylamino)purine and 6-(4-hydroxy-3-methyl-2-butenylamino)-9-beta-d-ribofuranosylpurine. The total amount of these four major cytokinins was estimated to be present at a concentration of 14 to 23 nanomoles per kilogram of rootless plant. These data indicate that adenine serves as a precursor of the purine moiety of cytokinin molecules and that the cytokinin biosynthetic sites are also located in the shoot in addition to the presumed root sites.  相似文献   

11.
A Salmonella typhimurium LT2 mutant which harbors a mutation (miaB2508::Tn10dCm) that results in a reduction in the activities of the amber suppressors supF30 (tRNA(CUATyr)), supD10 (tRNA(CUASer)), and supJ60 (tRNA(CUALeu)) was isolated. The mutant was deficient in the methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A), a modified nucleoside that is normally present next to the anticodon (position 37) in tRNAs that read codons that start with uridine. Consequently, the mutant had i6A37 instead of ms2io6A37 in its tRNA. Only small amounts of io6A37 was found. We suggest that the synthesis of ms2io6A occurs in the following order: A-37-->i6A37-->ms2i6A37-->ms2io6A37. The mutation miaB2508::Tn10dCm was 60% linked to the nag gene (min 15) and 40% linked to the fur gene and is located counterclockwise from both of these genes. The growth rates of the mutant in four growth media did not significantly deviate from those of a wild-type strain. The polypeptide chain elongation rate was also unaffected in the mutant. However, the miaB2508::Tn10dCm mutation rendered the cell more resistant or sensitive, compared with a wild-type cell, to several amino acid analogs, suggesting that this mutation influences the regulation of several amino acid biosynthetic operons. The efficiencies of the aforementioned amber suppressors were decreased to as low as 16%, depending on the suppressor and the codon context monitored, demonstrating that the ms2 group of ms2io6A contributes to the decoding efficiency of tRNA. However, the major impact of the ms2io6 modification in the decoding process comes from the io6 group alone or from the combination of the ms2 and io6 groups, not from the ms2 group alone.  相似文献   

12.
Five cytokinin-active ribonucleosides have been isolated from the transfer RNA of 7-day-old green pea shoots (Pisum sativum L. var. Alaska). Ultraviolet spectroscopy and mass spectrometry have been used to identify 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β- d-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine. The latter was separated into the cis- and trans-isomers by thin layer chromatography. The fifth cytokinin is indicated to be 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine on the basis of its chromatographic properties.  相似文献   

13.
The cis isomer of 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthiopurine and its 9-β- and 9-α-d-ribofuranosyl derivatives have been synthesized and their physical and spectroscopic properties are described. The biological activities of these compounds have been determined in the tobacco bioassay and are compared with those of 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-2-methylthiopurine and its β-ribofuranoside. The 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d-ribofuranosylpurine (ms-ribosylzeatin) isolated from a Pisum tRNA preparation was shown to consist of both isomers, which were separated by TLC and identified by comparisons of UV and MS with those of the synthetic compounds.  相似文献   

14.
Five cytokinins, trans-zeatin, 9-β-d-ribofuranosyl-trans-zeatin, 9-β-d-ribofuranosyl-cis-zeatin, 6-(trans-4-O-β-d-glucopyranosyl-3-methyl-2-butenylamino)purine and 6-(trans-4-O-β-d-glucopyranosyl-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine were identified from immature seeds of Dolichos lablab.  相似文献   

15.
tRNA(6) (Leu) in Pisum sativum seed has been purified. This tRNA species contains a cytokinin-active nucleoside and accounts for approximately 7% of the total cytokinin activity in acid hydrolysates of pea tRNA. The cytokinin has been identified as ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino) -9-beta-d-ribofuranosylpurine.  相似文献   

16.
Effects on translation in vivo by modification deficiencies for 2-methylthio-N6-isopentenyladenosine (ms2i6A) (Escherichia coli) or 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) (Salmonella typhimurium) in tRNA were studied in mutant strains. These hypermodified nucleosides are present on the 3' side of the anticodon (position 37) in tRNA reading codons starting with uridine. In E. coli, translational error caused by tRNA was strongly reduced in the case of third-position misreading of a tryptophan codon (UGG) in a particular codon context but was not affected in the case of first-position misreading of an arginine codon (CGU) in another codon context. Misreading of UGA nonsense codons at two different positions was codon context dependent. The efficiencies of some tRNA nonsense suppressors were decreased in a tRNA-dependent manner. Suppressor tRNA which lacks ms2i6A-ms2io6A becomes more sensitive to codon context. Our results therefore indicate that, besides improving translational efficiency, ms2i6A37 and ms2io6A37 modifications in tRNA are also involved in decreasing the intrinsic codon reading context sensitivity of tRNA. Possible consequences for regulation of gene expression are discussed.  相似文献   

17.
We have identified the cis isomer of N6-(4-hydroxy-isopentenyl)-2-methylthioadenosine (ms2io6A) as a component of the tRNA of Salmonella typhimurium. This is the first report of this compound in the tRNA of any member of the enterobacteriaceae: the nucleoside was previously thought to be found exclusively in plants or plant associated bacteria. Interestingly, all E. coli strains examined were found to lack ms2io6A. Evidence is presented which suggests S. typhimurium tRNA also contains low levels of 5-carboxymethylaminomethyl-2-thiouridine (cmnm5s2U) in addition to 5-methylaminomethyl-2-thiouridine (mnm5s2U).  相似文献   

18.
tRNA from Salmonella enterica serovar Typhimurium contains five thiolated nucleosides, 2-thiocytidine (s(2)C), 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U), and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A). The levels of all of them are significantly reduced in cells with a mutated iscS gene, which encodes the cysteine desulfurase IscS, a member of the ISC machinery that is responsible for [Fe-S] cluster formation in proteins. A mutant (iscU52) was isolated that carried an amino acid substitution (S107T) in the IscU protein, which functions as a major scaffold in the formation of [Fe-S] clusters. In contrast to the iscS mutant, the iscU52 mutant showed reduced levels of only two of the thiolated nucleosides, ms(2)io(6)A (10-fold) and s(2)C (more than 2-fold). Deletions of the iscU, hscA, or fdx genes from the isc operon lead to a similar tRNA thiolation pattern to that seen for the iscU52 mutant. Unexpectedly, deletion of the iscA gene, coding for an alternative scaffold protein for the [Fe-S] clusters, showed a novel tRNA thiolation pattern, where the synthesis of only one thiolated nucleoside, ms(2)io(6)A, was decreased twofold. Based on our results, we suggest two principal distinct routes for thiolation of tRNA: (i) a direct sulfur transfer from IscS to the tRNA modifying enzymes ThiI and MnmA, which form s(4)U and the s(2)U moiety of (c)mnm(5)s(2)U, respectively; and (ii) an involvement of [Fe-S] proteins (an unidentified enzyme in the synthesis of s(2)C and MiaB in the synthesis of ms(2)io(6)A) in the transfer of sulfur to the tRNA.  相似文献   

19.
We have synthesized and compared the cytokinin activities in the tobacco bioassay of a series of benzologs of 6-(3-methyl-2-butenylamino)purine (N6-(Δ2-isopentenyl)adenine) (1a) and 6-benzylaminopurine (N6-benzyl-adenine) (1c). The linear benzo analogs 8-(3-methyl-2-butenylamino)imidazo[4,5-g]quinazoline (2b) and 8-benzyla-minoimidazo[4,5-g]quinazoline (2c) are active, while 9-(3-methyl-2-butenylamino)imidazo[4,5-f]quinazoline (3b) and 6-(3-methyl-2-butenylamino)imidazo[4,5-h]quinazoline (4b) are slightly active and 9-benzylaminoimidazo[4,5-f]-quinazoline (3c) and 6-benzylaminoimidazo[4,5-h]quinazoline (4c) are inactive. Compounds 2b and 2c represent the first examples of active cytokinins containing a tri-heterocyclic moiety. The above series of compounds demonstrates structural factors that affect cytokinin activity. These compounds also have interesting fluorescence properties which could render them useful as probes to study the mechanism of cytokinin action.  相似文献   

20.
The modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) is present immediately to the 3' side of the anticodon (position 37) in tRNAs that read codons starting with uridine and hence include amber (UAG) suppressor tRNAs. We have used strains of Salmonella typhimurium that differ only in their ability to synthesize ms2io6A in order to determine specifically how this modified nucleoside influences the efficiency of amber suppression in two codon contexts differing by only which base is 3' of the codon. The results show that the presence of the modified nucleoside ms2io6A not only improves the efficiency of the suppressor tRNAs but also allows them to distinguish between at least two bases 3' of the codon. Thus, the presence of ms2io6A reduces the intrinsic codon context sensitivity of the tRNA and specifically counteracts an unfavourable nucleotide on the 3' side of the codon. The possible codon-anticodon interactions responsible for this effect are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号