首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1-100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1-2 preisolation samples and 4-5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction.  相似文献   

2.
It is crucial for biodiversity conservation that protected areas are large and effective enough to support viable populations of their original species. We used a point count distance sampling method to estimate population sizes of a range of bird species in three Atlantic forest protected areas of size 5600, 22,500, and 46,050 ha. Population sizes were generally related to reserve area, although in the mid-sized reserve, there were many rare species reflecting a high degree of habitat heterogeneity. The proportions of forest species having estimated populations >500 ranged from 55% of 210 species in the largest reserve to just 25% of 140 species in the smallest reserve. All forest species in the largest reserves had expected populations >100, but in the small reserve, 28% (38 species) had populations <100 individuals. Atlantic forest endemics were no more or less likely to have small populations than widespread species. There are 79 reserves (>1000 ha) in the Atlantic forest lowlands. However, all but three reserves in the north of the region (Espírito Santo and states north) are smaller than 10,000 ha, and we predict serious levels of local extinction from these reserves. Habitat heterogeneity within reserves may promote species richness within them, but it may also be important in determining species loss over time by suppressing populations of individual species. We suggest that most reserves in the region are so small that homogeneity in the habitat/altitude within them is beneficial for maintenance of their (comparatively small) original species compliment. A lack of protection in the north, continued detrimental human activity inside reserves, and our poor knowledge of how well the reserve system protects individual taxa, are crucial considerations in biodiversity management in the region.  相似文献   

3.
We surveyed primates in seven fragments of Atlantic forest ranging from 210 to 24,250 ha in Espírito Santo, southeastern Brazil. The objective was to assess their population densities and fragment-specific population sizes in order to discuss the survival of primates in this highly fragmented landscape. We used line-transect sampling for censusing primates and estimated densities via DISTANCE program. Alouatta fusca, Cebus apella, Callicebus personatus, and Callithrix geoffroyi live in the study area. Although variable, primate numbers were higher in larger than in smaller fragments, the likely reasons being the lack of space and food resources (fruits) and higher impact of mesopredators (small cats) in small fragments. The estimated densities are within the range reported for other Atlantic forest sites, except for brown howlers (Alouatta fusca), which were extremely rare. Estimates of population sizes were on the order of several hundreds to thousands of individuals/species in the large-sized fragments (ca. 20,000 ha), while comparable estimates for the other areas indicate <500 individuals/species in the medium-sized reserves (ca. 2,000 ha), and <50 individuals/species in the small fragments (ca. 200 ha). These estimates suggest that only Atlantic forest fragments 20,000 ha can harbor primate populations large enough to escape extinction in the long term. Given that <20% of all protected areas remaining in the Atlantic forest are 20,000 ha, management measures are urgently needed to improve primate conservation in this biome.  相似文献   

4.
A first analysis of the stability of trophic structure following tropical forest fragmentation was performed in an experimentally fragmented tropical forest landscape in Central Amazonia. A taxonomically and trophically diverse assemblage of 993 species of beetles was sampled from 920 m2 of leaf litter at 46 sites varying in distance from forest edge and fragment area. Beetle density increased significantly towards the forest edge and showed non-linear changes with fragment area, due to the influx of numerous disturbed-area species into 10 ha and 1 ha fragments. There was a marked change in species composition with both decreasing distance from forest edge and decreasing fragment area, but surprisingly this change in composition was not accompanied by a change in species richness. Rarefied species richness did not vary significantly across any of the sites, indicating that local extinctions of deep forest species were balanced by equivalent colonization rates of disturbed-area species. The change in species composition with fragmentation was non-random across trophic groups. Proportions of predator species and xylophage species changed significantly with distance from forest edge, but no area-dependent changes in proportions of species in trophic groups were observed. Trophic structure was also analysed with respect to proportions of abundance in six trophic groups. Proportions of abundance of all trophic groups except xylomycetophages changed markedly with respect to both distance from forest edge and fragment area. Local extinction probabilities calculated for individual beetle species supported theoretical predictions of the differential susceptibility of higher trophic levels to extinction, and of changes in trophic structure following forest fragmentation. To reduce random effects due to sampling error, only abundant species (n = 46) were analysed for extinction probabilities, as defined by absence from samples. Of these common species, 27% had significantly higher probabilities of local extinction following fragmentation. The majority of these species were predators; 42% of all abundant predator species were significantly more likely to be absent from samples in forest fragments than in undisturbed forest. These figures are regarded as minimum estimates for the entire beetle assemblage because rarer species will inevitably have higher extinction probabilities. Absolute loss of biodiversity will affect ecosystem process rates, but the differential loss of species from trophic groups will have an even greater destabilizing effect on food web structure and ecosystem function.  相似文献   

5.
Habitat fragmentation is one of the major threats to species diversity. In this review, we discuss how the genetic and demographic structure of fragmented populations of herbaceous forest plant species is affected by increased genetic drift and inbreeding, reduced mate availability, altered interactions with pollinators, and changed environmental conditions through edge effects. Reported changes in population genetic and demographic structure of fragmented plant populations have, however, not resulted in large-scale extinction of forest plants. The main reason for this is very likely the long-term persistence of small and isolated forest plant populations due to prolonged clonal growth and long generation times. Consequently, the persistence of small forest plant populations in a changing landscape may have resulted in an extinction debt, that is, in a distribution of forest plant species reflecting the historical landscape configuration rather than the present one. In some cases, fragmentation appears to affect ecosystem integrity rather than short-term population viability due to the opposition of different fragmentation-induced ecological effects. We finally discuss extinction and colonization dynamics of forest plant species at the regional scale and suggest that the use of the metapopulation concept, both because of its heuristic power and conservation applications, may be fruitful.  相似文献   

6.
Aim We analysed presence/absence data for understorey bird species in rain forest fragments sampled from 1979 through 2001. Here we consider extinctions between 1992, when most fragments had been isolated for at least 8 years, and 2001. Our objectives were to determine whether high extinction rates documented soon after isolation continued through up to 20 years after isolation, and to examine fragment size and landscape effects on extinction. Location Biological Dynamics of Forest Fragments Project, near Manaus, Brazil. Methods Through 1992, birds were surveyed with standardized mist net sampling in ten 1‐ to 100‐ha fragments. We repeated the mist net protocol in 2000–01. We also added remote taping of the dawn chorus and tape playback surveys for species captured in 1991–92 but not in 2000–01. Results Between 1992 and 2001, 37 species went extinct in at least one fragment. As expected, extinction rate decreased with increasing fragment size. Over 30% of species went extinct in 1‐ha fragments, compared to about 5% in 100‐ha fragments. Extinction followed a predictable pattern: most species lost from 100‐ha fragments between 1992 and 2001 had already gone extinct in smaller fragments before 1992. Despite extinctions, fragments gained species between 1992 and 2001, apparently due to species moving through the developing second growth matrix. Fragments surrounded by old second growth had lower extinction rates than predicted based on fragment size alone. Main conclusions Sequential extinctions occurred for at least 20 years. Some additional species previously lost from smaller fragments may continue to go extinct in 100‐ha fragments. At the same time, species assemblages in 1‐ and 10‐ha fragments mostly reflect second‐growth dynamics by 20 years after isolation. High species loss predicted from the first few years after isolation has not occurred, almost certainly because of recolonization.  相似文献   

7.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

8.
Abstract In this paper we tested the assumption that smaller and more isolated remnants receive fewer ant colonizers and lose more species. We also tested hypotheses to explain such a pattern. We sampled ants in Brazil for 3 years in 18 forest remnants and in 10 grasslands between them. We tested the influence of remnant area and isolation on colonization rate, as well as the effect of remnant area on extinction rate. We tested the correlation between remnant area and isolation to verify the landscape design. Colonization rate was not affected by remnant area or isolation. Extinction rate, however, was smaller in larger remnants. Remnant area and isolation were negatively correlated. We tested two hypotheses related to the decrease in ant species extinction rate with increased remnant area: (i) small remnants support smaller and more extinction‐prone populations; and (ii) small remnants are more often invaded by generalist species, which suffer higher extinction inside remnants. The density of ant populations significantly increased with area. Generalist species presented a lower colonization rate in larger remnants, contrary to the pattern observed in forest species. Generalist species suffered more extinction than expected inside remnants. The lack of response of colonization rate to remnant area can be explained by the differential colonization by generalist and forest species. The decrease of ant population density in smaller remnants could be related to loss of habitat quality or quantity. The higher colonization by generalist ant species in the smaller remnants could be related to landscape design, because smaller remnants are more similar to the matrix than larger ones. Our results have important implications for conservation strategies because small remnants seem to be more affected by secondary effects of fragmentation, losing more forest species and being invaded more often by generalist species. Studies that compare only species richness between remnants cannot detect such patterns in species composition.  相似文献   

9.
Abstract. In this study we used species inventory data collected in 1970 and 1993 from 132 plots in a 14.5ha deciduous forest to examine local extinction and colonization processes among 45 field layer species. Local colonization rate was positively related to both seed size and seed dispersal features. Local extinction rate was negatively related to seed size. Growth form (clonal vs. non-clonal) and presence of a seed bank were not found to be associated with local dynamics. Despite an overall constancy in species composition during this period, plants exhibited a considerable mobility among the 132 plots. This pattern conformed to a suggested ‘carousel model’ of species mobility in grasslands. A tentative suggestion is that this mobility acts on a comparatively broader spatio-temporal scale in deciduous forests as compared with grasslands. Additional data are presented indicating that species abundance (frequency) among field layer plants in deciduous forest communities is consistent among forest fragments, and when comparing local and regional scales. The main conclusion is that life history features of the seed dispersal/recruitment phase, particularly seed size, are causally associated with abundance patterns at least at a local scale, but possibly also on a broader regional scale.  相似文献   

10.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

11.
Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.  相似文献   

12.
The few remaining Afromontane forest fragments in northern Ethiopia and the surrounding degraded, semiarid matrix form a habitat mosaic of varying suitability for forest birds. To evaluate the effect of recent land rehabilitation efforts on bird community composition and diversity, we studied bird species distributions in ten small forest fragments (0.40–20.95 ha), five grazing exclosures (10-year-old forest restoration areas without wood extraction and grazing livestock) and three grazed matrix sites during the rainy season (July–October 2004) using 277 one-hour species counts. Based on the distribution pattern of 146 bird species, sites were assigned to one of three bird communities (birds of moist forest, dry forest or degraded savanna), each occupying a well-defined position along an environmental gradient reflecting decreasing vegetation structure and density. All three communities were representative of the avifauna of Afrotropical Highland open forest and woodland with a high proportion of invasive and competitive generalist species (31%). Apart from these, exclosures shared more species with forest fragments (20%) than did the grazed matrix (5%), indicating local ecosystem recovery. By increasing habitat heterogeneity, exclosures have the potential to enhance landscape connectivity for forest birds and are, therefore, an effective instrument for conserving species in a fragmented landscape. However, 52 bird species (36%) occurred exclusively within forest patches and many forest birds that use exclosures are unlikely to maintain viable populations when forest fragments disappear, particularly as forest fragments may be a critical resource during the hot dry season. This highlights the high conservation value of small isolated forest fragments for less tolerant, forest-limited and/or biome-restricted species.  相似文献   

13.
Habitat fragmentation increases the migration distances among remnant populations, and is predicted to play a significant role in altering both demographic and genetic processes. Nevertheless, few studies have evaluated the genetic consequences of habitat fragmentation in light of information about population dynamics in the same set of organisms. In a 10,000-km(2) experimentally fragmented landscape of rainforest reserves in central Amazonia, we examine patterns of genetic variation (amplified fragment length polymorphisms, AFLPs) in the epiphyllous (e.g. leaf-inhabiting) liverwort Radula flaccida Gott. Previous demographic work indicates that colonization rates in this species are significantly reduced in small forest reserves. We scored 113 polymorphic loci in 86 individuals representing five fragmented and five experimentally unmanipulated populations. Most of the variation (82%) in all populations was harboured at the smallest (400 m(2)) sampling unit. The mean ((+/-) SD) within-population genetic diversity (Nei's), of forest remnants (0.412 +/- 0.2) was indistinguishable from continuous (0.413 +/- 0.2) forests. Similarly, F(ST) was identical among small (1- and 10-ha) and large (> or = 100-ha) reserves (0.19 and 0.18, respectively), but linkage disequilibrium between pairs of loci was significantly elevated in fragmented populations relative to those in continuous forests. These results illustrate that inferences regarding the long-term viability of fragmented populations based on neutral marker data alone must be viewed with caution, and underscore the importance of jointly evaluating information on both genetic structure and demography. Second, multilocus analyses may be more sensitive to the effects of fragmentation in the short term, although the effects of increasing linkage disequilibrium on population viability remain uncertain.  相似文献   

14.
Core-satellite theory predicts that, via the “rescue effect”, widespread, abundant species should have reduced risk of local extinctions. We test this hypothesis in southeastern Malagasy littoral forest using data on distribution and abundance of trees and woody understory vegetation in tropical forest fragments along a disturbance gradient. We partition the mortality risk into two kinds of extinction factors, separately operating at demographic (local) and landscape (regional) scales, contrary to core-satellite predictions, for both trees and woody understory vegetation, that the relative number of core (abundant) species declined significantly with increasing disturbance. In the least-degraded forest fragments there was a strong mode of core species, while in the moderately- and severely-degraded fragments the species distributions were essentially log-normal, lacking a substantial core mode. While the rescue effect mitigates one kind of extinction risk, namely local environmental and demographic stochasticity, it may not counterbalance widespread pervasive sources of mortality. The amount of internal forest fragmentation appears to have a much greater effect on species richness and diversity than either fragment size or shape.  相似文献   

15.
It is often assumed that species recolonization follows from the restoration of key habitat structure. Thus, forest restoration focuses on the recovery of trees into deforested landscapes, so that a multitude of associated organisms can achieve “colonization credit” and recolonize from remnant source populations into restored habitat. This opportunity for recolonization exists because species vulnerable to habitat loss may experience an “extinction debt,” during which their remnant populations decline only slowly to equilibrium with a deforested landscape. These persistent but declining populations become propagule sources for recolonization. To test limits to “colonization credit,” this study focused on old‐growth dependent lichen epiphytes, using a simulation to identify a hypothetical threshold at which: (1) the number of remnant populations, and (2) their population sizes, are too low to achieve recolonization and population recovery, despite efforts placed into forest restoration. The results show that for a landscape scenario relevant to the industrialized temperate zone, with less than 5% of old‐growth forest remaining, and ambitions for restoration to circa 10–15% forest cover, there is a failure to achieve population recovery over long timescales (i.e. within 600 years), making translocation a necessary option. This delay represents a “colonization deficit” that may be a common feature in ecological restoration more generally.  相似文献   

16.
Organisms must possess good dispersal ability to persist in fragmented landscapes, as extinction in habitat patches is frequent and patches must be re-colonised to keep viable metapopulations. Thus, metapopulation maintenance is dependent on patch size and distance, although these affect species differently. In order to evaluate the ability of Nymphalid butterfly species to live in naturally fragmented small forest fragments we marked and released 3,415 butterflies in 16 of these areas separated in two networks at the Serra da Canastra National Park (PNSC), south-eastern Brazil. Subsequent recaptures in different forest fragments enabled us to assess the dispersal rates and distances for several Nymphalid species. Seventeen butterflies from 11 out of the 50 species captured were directly observed to disperse from 500 m to 870 m. Dispersal rates varied between 1 and 7% of the marked individuals and were directly correlated to the mean forewing length of each butterfly species population. The connectivity of the forest fragments through creeks appear to facilitate butterfly dispersal among fragments within micro-basins, as only one out of 50 dispersing individuals was observed to fly from one micro-basin to the other. Several species had viable populations in the small-fragment network. The distance between fragments is crucial as the coarser fragment network was unlikely to sustain viable populations of most of the species. The protection of large forest fragments located outside of the PNSC may be necessary to promote colonization of the smaller forest fragments inside the Park.  相似文献   

17.
Conservation biologists need to effectively monitor species given resource limitations and the inherent challenges of assessing long-term demographic processes. We assessed gopher tortoise (Gopherus polyphemus) abundance at a landscape scale and at the scale of 3 local populations within the Conecuh National Forest (CNF), Alabama, USA, between 1991 and 2017. We collected landscape-level data from line transect distance sampling arranged uniformly across the CNF during a single season (2011); we obtained data for local populations from long-term mark-recapture of individuals at 3 sites selected based on prior knowledge of high density at each. At a landscape scale, we estimated 5,242 (95% CI = 3,538–7,768) tortoises occurred across the approximately 34,000-ha forest, yielding a density of 0.14–0.32 tortoises/ha. These low densities across the landscape suggest that, on average, management activities across the property have not allowed tortoise populations to retain the social structure needed for long-term persistence. The 3 local populations, however, contained 25–60 individuals and densities of 1.9–6.9 tortoises/ha. Over the study period, populations at 2 sites were stable and the third experienced significant population growth. Mean annual survival of individuals was 0.89 and invariant across size classes. Overall, line transect distance sampling is important for assessing landscape-scale abundance of tortoises but may fail to detect local clusters of high-density sites important for population persistence. Our mark-recapture efforts at the local scale revealed that small populations on these high-density sites can exhibit long-term stability or growth even though they do not meet current established criteria for viability. Improved models that incorporate immigration and emigration and better reflect the dynamics of peripheral populations would assist in determining how such populations best contribute to species recovery and regional conservation targets. © 2020 The Wildlife Society.  相似文献   

18.
Estrada  A.  Coates-Estrada  R.  Meritt  D.  Montiel  S.  Curiel  D. 《Plant Ecology》1993,107(1):245-257
Destruction and fragmentation of tropical rain forest result in a loss of species and of generating capacity of the ecosystem via animal vectors such as seed dispersal agents. To gather quantitative data regarding this ecological problem, birds and mammals were censused in 30 forest fragments, 15 agricultural islands representing five types of vegetation (coffee, cacao, citrus, pepper and mixed-crops) and in three pastures in Los Tuxtlas, southern Veracruz, Mexico. More than 6000 animals of 257 species were detected thus suggesting the existence of a rich species pool in the fragmented landscape. Frugivores accounted for 60% of species, for 72% of individuals censured and for 85% of the total animal biomass recorded. Clusters of small forest fragments (<100 ha) were richer in species and individuals than clusters of large area (>100 ha) forest islands. Pastures were especially poor in forest birds and mammals. While the agricultural islands studied contributed to only 1% of the total area of vegetation sampled, they contained 58% of all species detected and 34% of all individual birds and mammals censured. Recaptures indicated inter-island movements of forest birds and mammals. Forty percent of the species were detected in forest habitats only, the rest were detected in forest and in agricultural habitats. Seeds of forest interior plants dispersed by birds and bats were detected in the agricultural habitats. The value of agricultural islands as landscape features providing some degree of biotic connectivity among fragmented animal populations is discussed.  相似文献   

19.
Anthropogenic factors constitute the primary deterministic causes of species declines, endangerment and extinction: land development, overexploitation, species translocations and introductions, and pollution. The primary anthropogenic factors produce ecological and genetic effects contributing to extinction risk. Ecological factors include environmental stochasticity, random catastrophes, and metapopulation dynamics (local extinction and colonization) that are intensified by habitat destruction and fragmentation. Genetic factors include hybridization with nonadapted gene pools, and selective breeding and harvesting. In small populations stochastic factors are especially important, including the ecological factors of Allee effect, edge effects, and demographic stochasticity, and the genetic factors of inbreeding depression, loss of genetic variability, and fixation of new deleterious mutations. All factors affecting extinction risk are expressed, and can be evaluated, through their operation on population dynamics.  相似文献   

20.
Joshi J  Stoll P  Rusterholz HP  Schmid B  Dolt C  Baur B 《Oecologia》2006,148(1):144-152
Habitat fragmentation is one of the most important threats to biodiversity. Decreasing patch size may lead to a reduction in the size of populations and to an increased extinction risk of remnant populations. Furthermore, colonization rates may be reduced in isolated patches. To investigate the effects of isolation and patch size on extinction and colonization rates of plant species, calcareous grasslands at three sites in the Swiss Jura Mountains were experimentally fragmented into patches of 0.25, 2.25, and 20.25 m2 by frequent mowing of the surrounding area from 1993 to 1999. Species richness in the fragment plots and adjacent control plots of the same sizes was recorded during these 7 years. In agreement with the theory of island biogeography, colonization rate was reduced by 30% in fragments versus non-isolated controls, and extinction increased in small versus large plots. Habitat specialists, in contrast to generalists, were less likely to invade fragments. In the last 4 years of the experiment, extinction rates tended to be higher in fragment than in control plots at two of the three sites. Despite reduced colonization rates and a tendency of increased extinction rates in fragments, fragmented plots had only marginally fewer species than control plots after 7 years. Hence, rates were a more sensitive measure for community change than changes in species richness per se. From a conservation point of view, the detected reduced colonization rates are particularly problematic in small fragments, which are more likely to suffer from high extinction rates in the long run.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号