首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.  相似文献   

2.
We studied the distribution of migratory warblers (genus: Sylvia) in poor and high quality habitat patches at a stopover site in the northern Negev, Israel. The purpose of our study was to test predictions based on the ideal free distribution (IFD) model by using a natural ecosystem which has a high turnover of individuals moving between unfamiliar foraging patches. We trapped birds in two groves of Pistacia atlantica embedded within a coniferous forest. The fruit-density ratio between these groves was 45:1. We compared bird density, body condition and habitat matching (the ratio between bird density and resource density) at the two sites. To analyse the data we integrated two approaches to density-dependent habitat selection: the isodar method and the habitat matching rule. As predicted by the IFD model, we found that habitat suitability decreased with bird density with a high correlation between warbler densities in the two habitat patches. Contrary to IFD predictions, warbler density in the poor patch was higher than expected by the habitat-matching rule. This habitat under-matching, had a cost: in the rich habitat the average energy gain per individual bird was higher than in the poor habitat. Further analysis suggests that the apparent habitat under-matching is not due to interference or differences in warbler competitive abilities. Therefore, we suggest that this migratory bird community is not at equilibrium because the birds possess imperfect knowledge of resource distribution. We propose that this lack of knowledge leads to free, but not ideal distributions of migrant birds in unfamiliar stop over sites.  相似文献   

3.
The timing of settlement decisions likely influences the quality of breeding site choices.This is particularly the case in migratory birds, because the conditions that enhance breeding success are often not apparent upon arrival after migration. A strategy that addresses this problem is to adjust settlement decisions when reliable information becomes available. We used a new indirect method – dynamic site occupancy modeling – to estimate apparent movement of black‐throated blue warblers Dendroica caerulescens among sites within a breeding season. Because individuals should disperse to sites that maximize their fitness, we hypothesized that warblers would move up a habitat quality gradient when opportunities arose. For our study species, that would involve moving into sites with greater shrub density and at higher elevation within northern hardwoods forest, as these two features are positively correlated with reproduction and apparent survival in this species. Although the probability of site occupancy in our study landscape remained consistent throughout the breeding season (range: 0.66–0.69), occupancy models revealed substantial support for apparent movement of individuals within the breeding season. The mean probability of emigration from a point count site was 0.21 (±0.03 SE), and the mean probability of immigration to a site not previously occupied was 0.51 (±0.05 SE). The spatial distribution of this movement was a function of habitat quality. A portion of the black‐throated blue warbler population appears to arrive on the breeding grounds and settle initially in sub‐optimal habitat, moving subsequently into high quality densely shrubbed habitat at higher elevations. This modeling approach provides a new means to test hypotheses about habitat selection and movement by using presence–non‐detection data.  相似文献   

4.
We formulated a species distribution model (SDM) for the amphidromous fish Sicyopterus japonicus on the basis of presence/absence data and confirmed its performance at various population densities. The best-fit SDM selected several environmental factors, including water depth and velocity, and performed validated prediction of presence/absence of various densities. The predicted probability of occurrence was positively correlated with the observed density. The density was positively related to habitat occupancy, suggesting that this species occupied a wide range of habitats under high densities, but only optimal habitat under low densities. Therefore, the threshold value for predicting presence/absence increased with decreasing densities.  相似文献   

5.
Habitat suitability estimates derived from species distribution models (SDMs) are increasingly used to guide management of threatened species. Poorly estimating species’ ranges can lead to underestimation of threatened status, undervaluing of remaining habitat and misdirection of conservation funding. We aimed to evaluate the utility of a SDM, similar to the models used to inform government regulation of habitat in our study region, in estimating the contemporary distribution of a threatened and declining species. We developed a presence‐only SDM for the endangered New Holland Mouse (Pseudomys novaehollandiae) across Victoria, Australia. We conducted extensive camera trap surveys across model‐predicted and expert‐selected areas to generate an independent data set for use in evaluating the model, determining confidence in absence data from non‐detection sites with occupancy and detectability modelling. We assessed the predictive capacity of the model at thresholds based on (1) sum of sensitivity and specificity (SSS), and (2) the lowest presence threshold (LPT; i.e. the lowest non‐zero model‐predicted habitat suitability value at which we detected the species). We detected P. novaehollandiae at 40 of 472 surveyed sites, with strong support for the species’ probable absence from non‐detection sites. Based on our post hoc optimised SSS threshold of the SDM, 25% of our detection sites were falsely predicted as non‐suitable habitat and 75% of sites predicted as suitable habitat did not contain the species at the time of our survey. One occupied site had a model‐predicted suitability value of zero, and at the LPT, 88% of sites predicted as suitable habitat did not contain the species at the time of our survey. Our findings demonstrate that application of generic SDMs in both regulatory and investment contexts should be tempered by considering their limitations and currency. Further, we recommend engaging species experts in the extrapolation and application of SDM outputs.  相似文献   

6.
Recent research shows that density dependence should result in predictable movements between habitats of different suitability, depending on whether population densities are increasing or decreasing. When population densities are increasing, habitats become filled in order of their suitability, resulting in a net flow from high suitability to low suitability. When populations decrease in density, the reverse can happen. These patterns suggest that genetic information can be used to infer habitat suitability since individual-based genetic assignment tests permit high resolution assessments of migration. We used replicated landscapes to study fishers ( Martes pennanti ) during a population increase and predicted that there should be a net flow of individuals from areas of shallow to deep snow, since snow depth has previously been linked to fisher fitness. A total of 769 fishers were sampled from 35 different landscapes and profiled at 16 microsatellite loci. From assignment tests, we inferred five genetic populations. By assigning each of the 35 landscapes to one of these five populations, we were able to determine the proportion of immigrants to each. Consistent with our prediction, there was a positive relationship between the proportion of immigrants and snow depth. The best model of fisher habitat suitability was one with both snow depth and the proportion of coniferous forest in landscapes. Our findings suggest that where population trend is known, genetic information can be used to measure habitat suitability.  相似文献   

7.
The only resident terrestrial herbivorous bird species in high-Arctic Svalbard, Norway is the endemic Svalbard rock ptarmigan (Lagopus muta hyperborea) of which little is known of its population dynamics. We assessed temporal and spatial variability of the pre-breeding population of Svalbard rock ptarmigan males using: 1) distance sampling to estimate density (2000–2009) and 2) occupancy modeling to determine the proportion of survey points being occupied in relation to a habitat index for ptarmigan habitat suitability (2005–2009). Data were collected using a point-transect sampling design. We split the analysis according to type of survey point (non-random, random, and survey points combined). Our estimated spring densities were low (1.3–3.1 territorial male/km2, non-random survey points, 2000–2009) with limited annual variability. The best models describing occupancy rates of territorial males at 2 different spatial scales (ptarmigan males observed ≤250 m and ≤450 m from the sampling point) were independent of spatial scales and the type of survey points. Occupancy dynamics were related to the habitat index whereas detection probability was year dependent. Extinction probability was negatively related to habitat quality (good habitats had lower extinction probability). We could not estimate the habitat effect on colonization precisely because initial occupancy rates were high at both spatial scales (estimated average initial occupancy at scale ≤250 m = 0.96; scale ≤450 m = 0.97). Colonization appeared to be positively related to the habitat index for the random survey points (including mainly marginal habitats), but the small sample size led to large uncertainty in the parameter estimate. Detection probabilities varied greatly between study years, thus demonstrating the importance of estimating detection probability annually. We recommend that future surveys are stratified with respect to habitat quality and to integrate the 2 methodologies in population monitoring of Svalbard rock ptarmigan. © 2011 The Wildlife Society.  相似文献   

8.
Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional‐scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently‐collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2‐km spatial filter and by modeling separately two subregions separated by the 500‐m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground‐truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows (n = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground‐truth sites. Similarly, a site habitat quality index at ground‐truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site‐based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field‐validated models of similar resolution would assist in guiding management of conservation‐dependent species.  相似文献   

9.
We evaluated patterns of occurrence and non-occurrence for Canada lynx (Lynx canadensis) across a 16,530-km2 study area in Maine to provide a better understanding of lynx habitat selection and habitat ecology on commercially managed forestlands in the Acadian Forest. Because of the influence of forest structure on lynx habitat selection and abundance of their primary prey, the snowshoe hare (Lepus americanus), and to improve our ability to build robust models, we used habitat information derived from a time series of Landsat satellite imagery spanning the period 1973–2004. We defined and mapped 10 forest types based on forest harvest history, time since harvest, and current forest condition. We compared a suite of models to evaluate relative influences of forest composition, habitat patch configuration, and hare density on habitat selection by lynx at the landscape scale. Occupied areas had greater average hare densities and percentage of mature conifer. Average hare density in occupied areas (0.74 hares/ha) was greater than in unoccupied areas (0.62 hares/ha), but was less than previous research has suggested may be necessary to support lynx populations in the southern portion of the species' range. No occupied areas occurred where average hare density was <0.5 hares/ha. Average hare density at the landscape-scale was strongly influenced by amount of high-quality hare habitat (i.e., conifer or mixedwood regenerating forest, 15–35 yr post-harvest). Edge density between mature conifer and high-quality hare habitat was substantially greater in occupied areas compared to unoccupied areas. Juxtaposition of those 2 forest types may provide edge habitat where lynx experience easier travel and improved access to prey in landscapes with extensive areas of high-quality hare habitat where travel and access may be somewhat limited by high understory stem density. Probability of occurrence declined nonlinearly with changes in hare density and percent mature conifer forest in the landscape; thus, suitability of currently occupied landscapes could change markedly with future changes in landscape-level hare densities and changing habitat associated with forest management. Where lynx conservation is a priority, we recommend that managers focus on creating and maintaining a minimum of 27% high-quality hare habitat within 100-km2 areas to promote landscape-scale hare densities >0.5 hares/ha. © The Wildlife Society, 2013  相似文献   

10.
Aim  The niche hypothesis could explain why some species introduced to new locations reach higher densities than in their native range: it posits that the new environment provides more abundant or higher quality resources or habitat, a more suitable physical environment or both. We investigate whether 11 bird species occur at higher densities in their introduced range than in their native range and whether the differences can be explained by the availability of preferred habitat or the suitability of climatic conditions in their introduced range relative to their native range.
Location  South Island, New Zealand (the introduced range); UK (the native range).
Methods  We first develop a series of models that accurately predict the density of 11 bird species at 54 UK farmland sites, which are closely matched to our New Zealand sites, from habitat and climatic variables. We then use these models to predict the density of the 11 species at 54 New Zealand farmland sites and compare the predicted and observed values.
Results  Actual densities at New Zealand sites were on average (median) 22 times (range: 1–6361) higher than predicted from the UK models and similarly higher than actually observed at comparable UK sites. Habitat and climatic variables can accurately predict bird densities in the UK but grossly underestimate densities for all species except Turdus merula in New Zealand.
Main conclusions  These findings indicate that factors other than the measured habitat and climatic variables must differ between the two regions and explain the much higher densities of New Zealand birds. We suggest that introduced birds, other than T. merula , in New Zealand may still experience enhanced niche opportunities due to greater availability of higher quality resources within habitats, release from natural enemy regulation, less exposure to extreme weather events, particularly during winter, or some combination of these processes.  相似文献   

11.
Variations in habitat quality impact on breeding success, leading to strong selection pressure for the best sites to be occupied first during a population increase and last during a decline. Coupled with dispersal and metapopulation processes, the result is that snapshot surveys of wildlife distributions may fail to reveal core areas that conservation seeks to protect. At a local scale, territory occupancy is a good indicator of quality but data are not readily available to assess occupancy for rarer species, in remote areas, and over large spatial extents. We introduce temporal suitability analysis as a way to generate an analogue of occupancy from a single survey and illustrate it using data on the little bustard in Spain. We first used Generalised Additive Modelling (GAM) to build a predictive distribution model using Geographic Information System (GIS) coverages and satellite imagery, and then applied the model retrospectively to a time series of satellite images to produce one distribution map for each year. These annual maps differed in the extent of Spain predicted as suitable for little bustards. By overlaying the maps, we identified areas predicted as suitable in one to n years. We show that this temporal suitability map correlates with a conventional habitat suitability map based on a single year but contains extra information on hierarchical use of habitats and the lag between suitability and use. The technique may be applied at a variety of spatial scales to reveal changes in expected occupancy as land use or external factors determining land cover types vary over time.  相似文献   

12.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

13.
The frequency distribution of species’ area of occupancy is often bimodal, most species being either very rare or very common in terms of number of occupied sites. This pattern has been attributed to the nonlinearity associated with metapopulation dynamics of the species, but there are also other explanations comprising sampling artifact and frequency distribution of suitable habitats. We tested whether the bimodal frequency distribution of occupied squares in central European birds could be derived solely from the frequency distribution of species population sizes (i.e. the sampling artifact hypothesis) or from the spatial distribution of their preferred habitats. Both models predict high proportion of very common species, i.e. the right side of frequency distribution. Bimodality itself is well predicted by models based on random placement of individuals according to their abundances but neither model predicts the observed prevalence of rare species. Even the combined models that assume random placement of individuals within the squares with suitable habitat do not predict such a high proportion of rare species. The observed distribution is more aggregated, rare species occupying a smaller portion of suitable habitat than predicted on the basis of their abundance. The pattern is consistent with metapopulation processes involving local population extinctions. The involvement of these processes is supported by two further observations. First, species rarity is associated with significant population trend and/or location on the edge of their ranges within central Europe, both situations presumably associated with metapopulation processes. Second, suitable habitats seem to be either saturated or almost unoccupied, which is consistent with the predictions of the metapopulation model based on nonlinear dynamics of extinction and colonization. Although the habitat suitability is an important determinant of species distribution, the rarity of many species of birds within this scale of observation seems to be affected by other factors, including local population extinctions associated with fragmentation of species’ habitats.  相似文献   

14.
Expanding populations offer an opportunity to uncover the processes driving spatial variation in distribution and abundance. Individual settlement decisions will be influenced by the availability and relative quality of patches, and by how these respond to changes in conspecific density. For example, conspecific presence can alter patch suitability through reductions in resource availability or territorial exclusion, leading to buffer effect patterns of disproportionate population expansion into poorer quality areas. However, conspecific presence can also enhance patch suitability through Allee effect processes, such as transmission of information about resources or improved predator detection and deterrence. Here, we explore the factors underlying the settlement pattern of a growing population of Montagu’s harriers (Circus pygargus) in Spain. The population increased exponentially between 1981 and 2001, but stabilised between 2001 and 2004. This population increase occurred alongside a remarkable spatial expansion, with novel site use occurring prior to maximum densities in occupied sites being reached. However, no temporal trends in fecundity were observed and, within sites, average fecundity did not decline with increasing density. Across the population, variance in productivity did increase with population size, suggesting a complex pattern of density-dependent costs and benefits. We suggest that both Allee and buffer effects are operating in this system, with the benefits of conspecific presence counteracting density-dependent declines in resource availability or quality.  相似文献   

15.
Aim To map changes in the abundance of African wetland birds using remotely derived habitat data. We show that abundance–occupancy relationships can be coupled with habitat association models to map changes in abundance. As conservation resources are more easily allocated when spatial and temporal patterns of abundance are known, our method provides guidance for conservation planning. Location Papyrus, Cyperus papyrus, swamps in east central Africa. Methods Presence/absence surveys of six bird species in 93 wetlands were used to construct models predicting probability of occurrence from habitat characteristics. Densities were then determined from surveys in 23 additional wetlands and modelled as functions of occurrence probability. We then used satellite imagery to derive habitat characteristics remotely in two time periods (1984–87 and 2000–03) and used the modelled relationships between (1) habitat and occupancy and (2) occupancy and density, to infer changes in abundance in all c. 30,000 wetlands within the study area. Results Wetlands within the region declined by 8.6% between the two time periods, but by > 75% in regions of high human population density. Bird densities were also highest in these regions, which comprised wetlands subject to high levels of disturbance. The geographical coincidence of high densities and habitat loss and the existence of positive associations between bird density and occurrence meant that birds declined by much more than the average rate of their habitat. Main conclusions Targeting conservation efforts in areas with high drainage would protect a high proportion of the bird populations. Encouraging people to derive income from disturbance to which the birds are tolerant, rather than drainage, is likely to be an effective strategy. Because habitat characteristics are a key driver of abundance–occupancy relationships, we conclude that there is wide‐scale scope to couple abundance–occupancy relationships with remote habitat mapping to efficiently inform conservation planning.  相似文献   

16.
Ring Ouzel Turdus torquatus breeding site occupancy in the Moorfoot Hills, southeast Scotland, was determined during the periods 1952–85 and 1998–2000, and sites were classed as either occupied or deserted during the latter period. Site occupancy during 1998–2000 was related to habitat data derived from a supervised classification of a Landsat 7 satellite image. Breeding sites were more likely to have remained occupied if they were at higher altitudes and had more heather cover within radii of both 200 and 450 m, although these effects became non-significant when spatial autocorrelation was accounted for. Using only topographical variables, potential breeding sites were predicted and the habitat surrounding them was compared with actual breeding sites. Actual breeding sites were more likely to have heather or grass–heather mosaic within 100 m than potential breeding sites, but there were no further habitat differences between actual and potential breeding sites within radii of 200 or 450 m. These results indicate that breeding sites at higher altitudes and with a higher cover of heather were less likely to have been deserted, and that lack of heather may prevent otherwise suitable breeding sites from becoming occupied by Ring Ouzels. More detailed field studies are needed to understand the mechanisms underlying these associations.  相似文献   

17.
Predicting species presence requires knowledge of detection of individuals, scale of model variables, model selection uncertainty, and spatial autocorrelation. Our objective was to incorporate recent modeling advances to predict potential habitat occupancy of northern bobwhite (Colinus virginianus). From 15 May–15 August 2008 and 2009, we conducted repeat-visit surveys at 360 sites within Delaware to sample presence of bobwhite. We randomly selected half the data to model scale-dependent relationships of bobwhite presence with metrics of landscape- and site-scale habitat composition and configuration. The final averaged habitat-occupancy model fit the remainder testing dataset with an area under the receiver operating characteristic curve value of 0.62. At the site scale, bobwhite presence was negatively related to interspersion and juxtaposition of early successional habitat (ESH; grassland and shrubland), ESH to forest edge density, and agriculture to forest edge density, though relative effect sizes were weak to moderate after accounting for model selection uncertainty. At the landscape scale, bobwhite presence was negatively related to patch cohesion of human development within 2.5 km and positively related to patch cohesion of ESH within 2.0 km, with both variables exerting strong effects. Bobwhite presence was also weakly and positively related to percentage of shrubland habitat within 1.0 km of the sampling point. We applied our habitat occupancy model to map the predicted presence of breeding bobwhite within the Delmarva Peninsula, USA. The modeling results and distribution map will provide guidance to State and Federal private land management programs in the Mid-Atlantic to identify where habitat management efforts will be most effective. Our methodology can also serve as a basis for future habitat modeling of bobwhite and other grassland–shrubland species across their range. © 2011 The Wildlife Society.  相似文献   

18.
It has commonly been argued that many territorial species select their breeding sites following an ideal despotic distribution model, in which the most productive, high-quality territories are more frequently occupied. Theoretical and empirical studies have shown that this occupancy pattern may have population regulatory consequences, leading to density dependence in heterogeneous habitats. During a 9-year research project in a forested area of south-eastern Spain, we tested some of the predictions of the ideal despotic distribution model and the site-dependent population regulation theory in a migratory raptor species, the booted eagle Hieraaetus pennatus . Contrary to the predictions of the despotic model, our results showed that the temporal pattern of territorial occupation did not differ from randomness, and that the territory occupancy rate was not significantly related to the reproductive parameters considered. At population level, the breeding variables were density independent, suggesting the absence of site-dependent regulation. In addition, we were unable to find significant differences in the habitat characteristics between high-quality and low-quality territories, classified according to the criteria of both occupancy frequency and average productivity. Overall, our results suggest that booted eagles select their territories at random, probably due to the lack of strong environmental heterogeneity, and that occupancy rate is not a good measure of territory quality for the population studied.  相似文献   

19.
The frequency of territory occupancy is a good indicator of territory quality. We studied territory occupancy in a Swiss population of the Wryneck Jynx torquilla , a declining farmland woodpecker, with the aim of identifying key habitat features for conservation management. Both static and dynamic approaches were applied using data on nest-site occupancy of 100 territories from six successive years. The static approach models the probability of territory occupancy; the dynamic approach estimates territory colonization and extinction. Frequently occupied territories were settled earlier in the season, suggesting that they may be of better quality, and birds settling in these territories had higher breeding success. Probability of territory occupancy increased with the area of old pear orchards and decreased with the area of vegetable cultivation. Both the area of old pear orchards and the presence of conspecifics within a territory were positively related to territory colonization, whereas territory extinction was negatively related to habitat heterogeneity. Old pear orchards were characterized by having both the highest density of ant nests and the greatest amount of bare ground. The latter is likely to facilitate access to ant prey. To ensure persistence of Wryneck populations in farmland, heterogeneous habitat matrices with high ant nest density and bare ground should be promoted. Finally, provision of artificial nesting cavities is likely to enhance territory occupancy. Providing that these key resources are present, Wrynecks are likely to persist even in intensively farmed areas.  相似文献   

20.
Habitat selection is a complex process, that is affected by several factors, including habitat characteristics, environmental conditions, and both intra‐ and interspecific interactions. We analysed habitat preferences of two top avian predators, Peregrine Falcon Falco peregrinus, a medium‐sized diurnal raptor, and Eagle Owl Bubo bubo, a large nocturnal raptor. These two species are known to compete for preferred nest‐sites, and proximity to cliffs with Eagle Owls may reduce Peregrine breeding output through predation of young Falcons. We investigated the environmental factors affecting occurrence and coexistence of the two species and the potential role of habitat suitability in favouring co‐occurrence in 3519 km2 of the central pre‐Alps of Italy, where the two species breed on cliffs and sometimes co‐occur on the same cliff. Peregrines settled on long, steep and favourably orientated cliffs in woodland landscapes close to urban areas. Eagle Owls settled on topographically similar cliffs, but in lower rainfall areas compared with cliffs occupied by Peregrines and cliffs unoccupied by either species. Sites where the two species co‐occurred were characterized by more horizontally extended cliffs compared with sites of exclusive occurrence of each species. An analysis of relative habitat suitability revealed that sites where the two species co‐occurred had the highest predicted probability of occupancy for both species, suggesting that those sites should be regarded as high‐quality sites. Breeding productivity of Eagle Owls was negatively affected by the co‐occurrence of Peregrines, whereas the effect of Eagle Owl proximity on Peregrine productivity varied according to cliff suitability for the Peregrines. Habitat selection had fitness consequences for Eagle Owls because breeding productivity increased with cliff length. Environmental conditions, particularly climatic factors, could allow the widespread coexistence of these competing raptors at the landscape scale, whereas at the local scale co‐occurrence could take place only on larger cliffs. These were preferred sites for both species, presumably because breeding at such sites offsets the costs of settling close to the competitor species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号