首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
1. Recent studies of rodent populations have demonstrated that certain parasites can cause juveniles to delay maturation until the next reproductive season. Furthermore, a variety of parasites may share the same host, and evidence is beginning to accumulate showing nonindependent effects of different infections. 2. We investigated the consequences for host population dynamics of a disease-induced period of no reproduction, and a chronic reduction in fecundity following recovery from infection (such as may be induced by secondary infections) using a modified SIR (susceptible, infected, recovered) model. We also included a seasonally varying birth rate as recent studies have demonstrated that seasonally varying parameters can have important effects on long-term host-parasite dynamics. We investigated the model predictions using parameters derived from five different cyclic rodent populations. 3. Delayed and reduced fecundity following recovery from infection have no effect on the ability of the disease to regulate the host population in the model as they have no effect on the basic reproductive rate. However, these factors can influence the long-term dynamics including whether or not they exhibit multiyear cycles. 4. The model predicts disease-induced multiyear cycles for a wide range of realistic parameter values. Host populations that recover relatively slowly following a disease-induced population crash are more likely to show multiyear cycles. Diseases for which the period of infection is brief, but full recovery of reproductive function is relatively slow, could generate large amplitude multiyear cycles of several years in length. Chronically reduced fecundity following recovery can also induce multiyear cycles, in support of previous theoretical studies. 5. When parameterized for cowpox virus in the cyclic field vole populations (Microtus agrestis) of Kielder Forest (northern England), the model predicts that the disease must chronically reduce host fecundity by more than 70%, following recovery from infection, for it to induce multiyear cycles. When the model predicts quasi-periodic multiyear cycles it also predicts that seroprevalence and the effective date of onset of the reproductive season are delayed density-dependent, two phenomena that have been recorded in the field.  相似文献   

2.
Fox predation on cyclic field vole populations in Britain   总被引:3,自引:0,他引:3  
The diet of the red fox Vulpes vulpes L. was studied during three winter periods in spruce pklantations in Britain, during which time the cyclic field vole Microtus agrestis L. populations varied in abundance. Field voles and roe deer Capreolus capreolus L. were the two main prey species in the diet of the red fox. The contribution of lagomorphs to fox diet never exceeded 35% and species of small mammal other than field voles were of minor importance. The contribution of field voles was dependent on vole density. The non-linear density dependent relationship with a rather abrupt increase of field voles in fox did when vole density exceeded ca 100 voles ha−1 was consistent with a prey-switching response. The contribution of field voles to fox diet during the low phase of population cycles was lower in Kielder Forest than in other ecosystems with cyclic vole populations. The number of foxes killed annually by forestry rangers was consistent with the evidence from other studies that foxes preying on cyclic small rodents might show a delayed numerical response to changes in vole abundance. Estimates of the maximum predation rate of the fox alone (200–290 voles ha−1 of vole habitat year−1) was well above a previously predicted value for the whole generalist predator community in Kielder Forest. Our data on the functional response of red foxes and estimates of their predation rates suggest that foxes should have a strong stabilising impact on vole populations, yet voles show characteristic 3-4 yr cycles.  相似文献   

3.
Cyclic changes in population growth rate are caused by changes in survival and/or reproductive rate. To find out whether cyclic changes in reproduction are an important part of the mechanism causing cyclic fluctuations in small mammal populations, we studied changes in the population structure and reproduction of field voles ( Microtus agrestis ), sibling voles ( M. rossiaemeridionalis ), bank voles ( Clethrionomys glareolus ), and common shrews ( Sorex araneus ) in western Finland during 1984–1992, in an area with 3-yr vole cycles. We also modelled the population growth of voles using parameter values from this study. The animals studied were collected by snap trapping in April, May, June, August, September, and, during 1986–1990, also in October. We found several phase-related differences in the population structure (age structure, sex ratio, proportion of mature individuals) and reproduction (litter size, length of the breeding season) of voles. In non-cyclic common shrews, the only significant phase-related difference was a lower proportion of overwintered individuals in the increase phase. According to the analyses and the vole model, phase-related changes in litter size had only a minor impact on population growth rate. The same was true for winter breeding in the increase phase. The length and intensity of the summer breeding season had an effect on yearly population growth but this impact was relatively weak compared to the effect of cyclic changes in survival. The population increase rates of Microtus were delayed dependent on density (8–12-month time lag). Our results indicate that cyclic changes in reproduction are not an important part of the mechanism driving cyclic fluctuations in vole populations. Low survival of young individuals appeared to play an important role in the shift from the peak to the decline phase in late summer and early autumn.  相似文献   

4.
1. Cowpox virus is an endemic virus circulating in populations of wild rodents. It has been implicated as a potential cause of population cycles in field voles Microtus agrestis L., in Britain, owing to a delayed density-dependent pattern in prevalence, but its impact on field vole demographic parameters is unknown. This study tests the hypothesis that wild field voles infected with cowpox virus have a lower probability of survival than uninfected individuals. 2. The effect of cowpox virus infection on the probability of an individual surviving to the next month was investigated using longitudinal data collected over 2 years from four grassland sites in Kielder Forest, UK. This effect was also investigated at the population level, by examining whether infection prevalence explained temporal variation in survival rates, once other factors influencing survival had been controlled for. 3. Individuals with a probability of infection, P(I), of 1 at a time when base survival rate was at median levels had a 22.4% lower estimated probability of survival than uninfected individuals, whereas those with a P(I) of 0.5 had a 10.4% lower survival. 4. At the population level, survival rates also decreased with increasing cowpox prevalence, with lower survival rates in months of higher cowpox prevalence. 5. Simple matrix projection models with 28 day time steps and two stages, with 71% of voles experiencing cowpox infection in their second month of life (the average observed seroprevalence at the end of the breeding season) predict a reduction in 28-day population growth rate during the breeding season from lambda = 1.62 to 1.53 for populations with no cowpox infection compared with infected populations. 6. This negative correlation between cowpox virus infection and field vole survival, with its potentially significant effect on population growth rate, is the first for an endemic pathogen in a cyclic population of wild rodents.  相似文献   

5.
Population structure, in terms of the body mass, condition, sex and reproductive status of individuals, has been found to vary in phase with population density in cyclic populations of microtine rodents. Because sustained population cycles involve delayed density dependent changes in the population growth rate, we would expect at least some life history traits also to depend on past densities. Detailed, long-term studies of changes in vole life history traits are however few, and are largely restricted to northern Europe. In view of the uncertainty as to whether the cyclic microtine populations of western Europe represent the same phenomenon as those of northern Europe, we studied temporal variation in the structure of a clearly cyclic population of the common vole Microtus arvalis Pallas, in the cereal plains of mid-western France. Our data set contains seasonal, individual-level data from long-term, large-scale trapping covering four entire population cycles. We found considerable cyclic variation in population structure in spring (April), but less so in summer (June). In spring of post-peak years, animals were of low body weight and body condition (particularly females), litter sizes were smaller and there was a reduction in the proportion of breeders. All of these could be proximal drivers of increased mortality rates, or decreased birth rates, contributing to the population declines. Few life history traits, however, showed direct density dependent variation, and none of the traits studied here showed delayed density dependence. We have shown declines in the fecundity and body condition of voles from a western European population that coincides with, and may be a proximal cause of, cyclic declines in population density. Closer attention to proximal causes, by which ecological processes drive cycles, could clarify the extent to which microtine cycles across Europe represent a single phenomenon.  相似文献   

6.
Age variation in a fluctuating population of the common vole   总被引:4,自引:0,他引:4  
We analysed variation in age in a fluctuating population of the common vole (Microtus arvalis) in southern Moravia, Czech Republic, to test the assumption of the senescence hypothesis that the age of voles increases with increasing population density. Between 1996 and 1998, we monitored the demographic changes by snap-trapping and live-trapping in a field population passing through the increase, peak and decline phase of the population cycle. We used the eye lens mass method to determine the age of snap-trapped animals and those that died in live-traps. The average age of winter males was clearly higher after the peak phase breeding season than before it. No such phase-dependent shift in age, however, was observed in the female component. Male age continued to increase from autumn to spring over the pre-peak winter, and the highest age was in spring of the peak phase year. However, after the peak phase breeding season the highest age was achieved in winter, with the decline phase males during the next spring tending to be younger. The average age of females in spring populations was always lower than in winter populations. The average age of voles from live-traps was always higher than voles from snap-traps, particularly in winter and spring populations, suggesting the presence of senescent animals. Although the density-dependent changes in age are consistent with those observed for other voles, they provide only weak evidence that population cycles in the common vole are accompanied by pronounced shifts in individual age, particularly in female voles.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

7.
In territorial microtines intra-specific density dependent processes can limit the maturation of individuals during the summer of their birth. This may have demographic consequences by affecting the number and the age distribution of breeding individuals in the population. Little is known about this process on a community level, though populations of many northern microtine species fluctuate in synchrony and are known to interfere socially with each other. We experimentally studied the influence of the field vole Microtus agrestis on maturation, breeding, space use and survival of weanling bank voles, Clethrionomys glareolus. Two additive competition experiments on bank vole populations were conducted in large outdoor enclosures, half of them additionally housing a field vole population. In a mid-summer experiment low population density and absence of older breeding females minimised intra-specific competition. Survival was not affected by the presence of field voles. Season had a significant effect on both the probability of maturation and breeding of the weanlings. Competition with field voles significantly delayed breeding, and coupled with seasonal effects decreased the probability of breeding. In a late-summer experiment breeding and survival of bank vole weanlings were studied for three weeks as part of a high density breeding bank vole population. Weanlings did not mature at all nor were their space use and survival affected by the presence of field voles. Our results show that competition with other species can also have an impact on breeding of immatures. In an extreme seasonal environment, even a short delay of breeding may decrease survival chances of offspring. Seasonal and competition effects together may thus limit the contribution of year born females to reproductive output of the population. Other studies have shown that adult breeding bank voles suffer lower survival in the presence of field voles, but this study showed no survival effects on the weanlings. Thus it might be beneficial for weanlings to stay immature especially in the end of the breeding season and postpone reproduction to the next breeding season if densities of competing species are high.  相似文献   

8.
The grey-sided vole (Clethrionomys rufocanus) is distributed over the entire island of Hokkaido, Japan, across which it exhibits multi-annual density cycles in only parts of the island (the north-eastern part); in the remaining part of the island, only seasonal density changes occur. Using annual sampling of 189 grey-sided vole populations, we deduced the geographical structure in their second-order density dependence. Building upon our earlier suggestion, we deduce the seasonal density-dependent structure for these populations. Strong direct and delayed density dependence is found to occur during winter, whereas no density dependence is seen during the summer period. The direct density dependence during winter may be seen as a result of food being limited during that season: the delayed density dependence during the winter is consistent with vole-specialized predators (e.g. the least weasel) responding to vole densities so as to have a negative effect on the net growth rate of voles in the following year. We conclude that the observed geographical structure of the population dynamics may be properly seen as a result of the length of the summer in interaction with the differential seasonal density-dependent structure. Altogether, this indicates that the geographical pattern in multi-annual density dynamics in the grey-sided vole may be a result of seasonal forcing.  相似文献   

9.
Pronounced population cycles are characteristic of many herbivorous small mammals in northern latitudes. Although delayed density-dependent effects of predation and food shortage are often proposed as factors driving population cycles, firm evidence for causality is rare because sufficiently replicated, large-scale field experiments are lacking. We conducted two experiments on Microtus voles in four large predator-proof enclosures and four unfenced control areas in western Finland. Predator exclusion induced rapid population growth and increased the peak abundance of voles over 20-fold until the enclosed populations crashed during the second winter due to food shortage. Thereafter, voles introduced to enclosures which had suffered heavy grazing increased to higher densities than voles in previously ungrazed control areas which were exposed to predators. We concluded that predation inhibits an increase in vole populations until predation pressure declines, thus maintaining the low phase of the cycle, but also that population cycles in voles are not primarily driven by plant-herbivore interactions.  相似文献   

10.
Factors involved in causing cyclic vole populations to decline, and in preventing populations from recovering during the subsequent low density phase have long remained unidentified. The traditional view of self-regulation assumes that an increase in population density is prevented by a change in the quality of individuals within the population itself, but this is still inadequately tested in the field. We compared the population growth of wild field voles ( Microtus agrestis ) from the low phase (conducted in 1998) with that of voles from the increase phase (conducted in 1999) in predator-proof enclosures (each 0.5 ha) in western Finland. Within a few months, enclosed vole populations increased to high density, and the realised per capita rate of change over the breeding season did not differ between the populations from different cycle phases. This implies that the recovery of populations from the low phase was not hindered by an impoverishment in quality of individual voles. Accordingly, we suggest that population intrinsic factors (irrespective of the mechanisms they are based on) are unlikely to play a significant role in the generation of cyclic density fluctuations of voles. Instead, we discovered direct density-dependent regulation in the vole populations. Accurate estimates of population growth and the observed density dependence provide important information for empirically based models on population dynamics of rodents.  相似文献   

11.
Density dependence influences northern bobwhite (Colinus virginianus) reproduction and overwinter mortality. However, the functional forms of these density-dependent relationships or the factors that influence them during the annual life cycle events of this bird are not clear. We used a systems analysis approach with a compartment model based on difference equations (Δt = 3 months) for bobwhites in South Texas to simulate population behavior using 16 different functional forms of density-dependent production and overwinter mortality. During the reproductive season, a weak linear density-dependent relationship resulted in the longest population persistence (up to 100.0 yr), whereas a reverse-sigmoid density-dependent relationship had the worst population persistence (2.5–3.5 yr). Regarding overwinter mortality, a sigmoid or weak linear density-dependent relationship and a weak linear or no density-dependent reproduction relationship had the longest population persistence (87.5–100.0 yr). Weak linear density-dependent reproduction with either sigmoid or weak linear overwinter mortality produced stable fall population trends. Our results indicated that density dependence may have a greater influence on overwinter survival of bobwhites than previously thought. Inclusion of density-dependent functional relationships that represent both density-dependent reproduction and overwinter mortality, were critical for our simulation model to function properly. Therefore, integrating density-dependent relationships for both reproductive and overwinter periods of the annual cycle of bobwhite life history events is essential for conducting realistic bobwhite population simulation analyses that can be used to test different management scenarios in an integrated and interdisciplinary manner. © 2012 The Wildlife Society.  相似文献   

12.
Mortality rates often depend on the size of a population. Using ideal free theory to model the optimal timing of reproduction in model populations, I considered how the specific relationship between density-dependent offspring mortality and population size affects the optimal temporal distribution of reproduction. The results suggest that the specific form of the relationship between density-dependent mortality and the number of offspring produced determines the degree to which reproduction within a population is synchronous. Specifically, reproductive synchrony decreases as density-dependent mortality becomes increasingly inversely related to the number of offspring produced and is highest when density-dependent mortality is directly density-dependent. These findings support the suggestion that predation pressure selects for greater reproductive synchrony in species where mortality is directly density-dependent, but does not affect the timing of reproduction in species with density-independent rates of mortality. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.  相似文献   

14.
Theoretical models have shown that the effect of removing a given proportion of the population can be profoundly different if the harvest takes place late in the season compared to early. We explore the effect of these differences using theoretical models based on the concept of demographic value and empirical data on seasonal patterns of natural mortality risk in two contrasting populations of willow ptarmigan in Norway. Based on the theoretical models, we found that changes in the timing of harvest have a much stronger effect in populations with relatively low annual survival compared to populations characterized by longevity typical for species with slow life histories. Also, the timing of harvest is more influential in cases with constant mortality hazards compared to a situation with density-dependent natural mortality. Empirical data from two study populations of willow ptarmigan showed large deviations from the theoretical predictions of models with both constant and density-dependent mortality hazards. There were also large differences in both the temporal pattern and magnitude of annual survival between the two ptarmigan populations (54 vs 26% annual survival). Site differences illustrate the importance of knowledge of both the magnitude and temporal pattern of natural mortality hazard to be able to correctly predict the effect of changing the timing of harvest in a population. In the two ptarmigan populations, we show how harvest quotas can be adjusted in accordance to the empirical estimates of natural mortality risk and how this determines the effects of shifting from harvesting early to late in the annual cycle.  相似文献   

15.
A recent model of microtine cycles has hypothesized that plant chemical defences can drive the precipitous decline phase, through periodic lethal toxin production (PLTP) by non-preferred plant foods. Here we enumerate possible mechanisms using a previously published model of optimal foraging by one consumer (microtine rodent) of two types of food plant (1 preferred and 1 non-preferred). Rate constants for each of the model parameters were sought from the extensive literature on vole cycles. For a range of likely values of input parameters, we evaluated model fit by applying five empirically derived criteria for cyclic behaviour. These were: cycles with a period length of 2-5 yr, peak densities of 100-350 voles per ha and trough densities of 0-25 ha(-1), ratio of peak to trough densities of 10-100, and the occurrence of a catastrophic collapse in the vole population followed by a prolonged low phase. In contrast to previous models of food-induced microtine cycles, the optimal foraging model successfully reproduced the first four criteria and the prolonged low phase. The criterion of population collapse was met if the non-preferred food began producing lethal toxins at a threshold grazing intensity, as predicted by PLTP. Fewer criteria could be met in variations on the model, in which the non-preferred food was equally as nutritious as the preferred food or was continuously toxic.  相似文献   

16.
Much recent literature is concerned with how variation among individuals (e.g., variability in their traits and fates) translates into higher-level (i.e., population and community) dynamics. Although several theoretical frameworks have been devised to deal with the effects of individual variation on population dynamics, there are very few reports of empirically based estimates of the sign and magnitude of these effects. Here we describe an analytical model for size-dependent, seasonal life cycles and evaluate the effect of individual size variation on population dynamics and stability. We demonstrate that the effect of size variation on the population net reproductive rate varies in both magnitude and sign, depending on season length. We calibrate our model with field data on size- and density-dependent growth and survival of the generalist grasshopper Melanoplus femurrubrum. Under deterministic dynamics (fixed season length), size variation impairs population stability, given naturally occurring densities. However, in the stochastic case, where season length exhibits yearly fluctuations, size variation reduces the variance in population growth rates, thus enhancing stability. This occurs because the effect of size variation on net reproductive rate is dependent on season length. We discuss several limitations of the current model and outline possible routes for future model development.  相似文献   

17.
Summary There are several published hypotheses that consider spacing behavior to be a significant factor causing the multiannual density fluctuations characteristic of some microtine rodent populations. Recent modeling efforts have concluded, however, that spacing behavior should have a stabilizing rather than a destabilizing effect on population dynamics. Why doesn't spacing behavior stabilize these cyclic populations? We argue that while spacing behavior does have a stabilizing influence on population dynamics by limiting the number of breeding individuals, reproduction continues and population size is not limited in an asymptotic manner. Rather, microtine social organization produces demographic changes within a population that allow density cycles to occur under certain conditions. Using a simulation model, we demonstrate that in a strongly seasonal environment populations with low density dependence in reproduction will cycle whereas populations with high density dependence in reproduction will have relatively stable densities. Given such complicating factors as the annual species nature of microtine rodents, occasionally intense predation, and the tendency for territoriality to break down during the non-breeding season, individuals with low density dependence in reproduction will always be able to invade and eventually dominate populations with high density dependence in reproduction, regardless of the resulting destabilization of population dynamics.  相似文献   

18.
Population cycles in microtines: The senescence hypothesis   总被引:13,自引:0,他引:13  
Summary The cause of population cycles in microtines (voles and lemmings) remains an enigma. I propose a new solution to this problem based on a crucial feature of microtine biology, shifts in age structure, that has been ignored until now. Empirical evidence indicates that age structure must shift markedly towards older animals during declines because of three characteristics of the previous peak year: a shortened breeding season, total replacement of the breeding population from peak to decline and density-dependent social inhibition of maturation of young. Declines become inevitable as populations composed of older animals survive and reproduce poorly because of the effects of senescence, possibly interacting with the experiences of peak density and I present both theoretical and empirical evidence for this hypothesis. Although a variety of physiological systems deteriorate with aging, I focus on a crucial one — the inability of older animals to effectively maintain homeostasis in the face of environmental challenges because of a progressive deterioration in the endocrine feedback mechanisms involved in the hippocampal—hypothalamic—pituitary—adrenal axis. Microtine populations will not exhibit cycles where age structure shifts are prevented owing to extrinsic factors such as intense predation. Six testable predictions are made that can falsify this hypothesis.  相似文献   

19.
We tested whether variation in heterozygosity could produce cyclic changes in population size in meadow voles (Microtus pennsylvanicus). For this to occur, three conditions must be met: (1) populations are more outbred (heterozygotic) at high than low population density, (2) heterozygotic voles are more aggressive than relatively inbred individuals, and (3) heterozygotic voles have lower reproductive fitness, though being superior at defending resources. We found no evidence that heterozygosity varied with population size or that reproductive success varied with heterozygosity. However, the former test was indirect and relatively weak. We directly measured aggression and heterozygosity of individual voles. Aggression was significantly related to heterozygosity: higher heterozygosity correlated with more aggression in males and less aggression in females. The proportion of variance in aggression that could be explained by heterozygosity was small. These results suggest that changes in population size of meadow voles could not be driven by systematic changes in heterozygosity with population size.  相似文献   

20.
We investigated habitat selection and movement characteristics of male weaselsMustela nivalis Linnaeus, 1766 during the breeding season through radio-telemetry in Kielder Forest (KF) in order to assess how weasel movement is influenced by prey dynamics, mate searching and predation risk, and whether the scale of weasel movement corresponds to the spatial scale of the asynchronous, multi-annual vole population cycles observed in KF. Weasels used habitats with a high proportion of grass cover to a much larger extend than habitats with less grass cover and moved through the latter habitats faster and / or straighter. Habitats with high amounts of grass cover also had the highest field vole abundance, although total rodent abundance did not differ between habitats. The selection of this habitat by weasels might reflect weasels preferring field voles as prey or avoiding habitats with little grass cover and high intraguild predation risk. Five out of 8 male weasels radio-tracked had low day-to-day site fidelity and moved between different clear cuts. Three other males were resident in a single clear cut. This variation may reflect mate searching by male weasels. The observation that most weasels (5 out of 8) roamed over large areas and the scale of their dispersal potential suggests, that if they regulated vole populations, they should have a greater synchronising effect on the spatial scale of vole population dynamics than what is observed in vole populations in KF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号