首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of acetylcholinesterase (AChE) isolated from coleoptiles of etiolated oat seedlings is strongly inhibited by neostigmine and less so by eserine. The optimum of the enzyme activity occurs at pH 7.2 and a temperature of + 36 °C. The enzyme Michaelis constant is 280 μM. Choline within the range of concentration from 0.001 to 10 mM does not affect the enzyme activity. Calcium ions at 5 mM concentration cause inhibition, while magnesium and manganese ions do not affect the enzyme activity. AChE isolated from oat seedlings differs in a number of properties from AChE occurring in the tissues of other plants. This research was supported in part by grant CPBP 05.02.4.07.  相似文献   

2.
Cholinesterases in the oat cell were found to be distributed in the cell wall (50%) and cytoplasm (42%). Activity of the cytosolic enzyme was inhibited about 80% by 1 mM Ca2+. The enzyme activity was also inhibited by Mn2+, but no inhibition by Mg2+ was observed. Effects of red light and calcium ion on the enzyme activity were investigated in vivo to confirm the involvement of phytochrome action in the regulation process of this enzyme via Ca2+. It was observed that inhibition by red light only occurs when external Ca2+ existed in the cell medium. Based on a previous report (8) that red light stimulates the influx of Ca2+ into the cytosol of oat cell, inhibition of the enzyme activity by irradiation of red light can be suggested to occur via the influx of Ca2+.  相似文献   

3.
In order to clarify the induction of alcohol dehydrogenase (ADH) by anaerobiosis in oat (Avena sativa L.), the seedlings were exposed to anaerobiosis and activity of ADH and ADH isozyme profiles were determined. The anaerobiosis increased ADH activities in shoots and roots of the seedlings. By day 2, the activity increased 5 and 4 times in the roots and the shoots, respectively, compared with those under aerobic condition. Based on nondenaturing electrophoresis, ADH isozyme composition analysis revealed six bands consisting of a dimmer enzyme with submits encoded by three different Adh genes. Changes in staining intensity of the isozymes indicated that the increase in ADH activity in oat under anaerobiosis resulted from increased enzyme synthesis.  相似文献   

4.
The effect of synthetic analogs of phytohormones and red light absorbed by phytochrome on the phospholipase D activity (PLD) was studied in oat (Avena sativa L.) seedlings. ABA manifested a short-term stimulating effect on PLD activity in the green seedlings and inhibited phospholipase activity in the etiolated plants. Kinetin inhibited enzyme activity in the etiolated seedlings and did not affect its activity in light. GA did not markedly affect PLD activity in the etiolated plants and activated this enzyme in the green seedlings. Finally, IAA did not affect the enzyme activity. The relationship of the regulatory effects of phytohormones and light on PLD activity is discussed.  相似文献   

5.
Summary Enzyme preparations from oat seedlings showing the activity ofmyo-inositol oxygenase (E.C.1.13.99.1) have been described previously. In contrast tomyo-inositol oxygenase preparations from other sources, e.g. rat kidney or yeast, the oat enzyme seemed to exhibit a somewhat less stringent activity, acting on other inositols and inositol methyl ethers as well as onmyo-inositol.By purification of the enzyme present in the extract from oat seedlings with the help of an affinity gel specific for enzymes acting onmyo-inositol a homogeneous enzyme preparation was obtained, which shows the same strict specificity as themyo-inositol oxygenase from other sources. It has a molecular weight of 62,000 and tends to aggregate to oligomers (up to tetramers) under physiological pH-values; in more alkaline media dissociation to monomers is observed. The action on the other inositols and inositol methyl ethers is apparently due to one or more other enzymes, which are also adsorbed on the affinity gel, but can be separated from themyo-inositol oxygenase by elution with increasing concentrations ofmyo-inositol.Dedicated to Professor Karl KRATZL on the occasion of his 60th birthday.  相似文献   

6.
寇江涛 《生态学杂志》2020,39(3):855-864
为了探讨外源2,4-表油菜素内酯(2,4-epibrassinolide,EBR)诱导燕麦(Avena sativa L.)幼苗抗盐性的效果及其生理调节机制,以"青引2号"和"加燕2号"燕麦为材料,研究NaCl胁迫下施用外源EBR对燕麦幼苗无机离子吸收、运输和分配的影响。结果表明:100mmol·L-1NaCl胁迫下,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+、Cl-含量均显著升高,对阳离子的吸收产生了拮抗作用,导致燕麦幼苗叶片和根系中的K+、Ca2+、Mg2+、Mn2+、Fe2+、Zn2+、Cu2+含量显著降低,离子稳态平衡被打破; 100 mmol·L-1NaCl胁迫下,施用0.01μmol·L-1外源EBR后,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+和Cl-含量显著降低,促进了燕麦幼苗根系对K+、Ca2+、Mg2+、Fe2+、Mn2+、Cu2+和Zn2+的吸收,叶片和根系中K+/Na+、Cl-/Na+、Ca2+/Na+、Mg2+/Na+、Fe2+/Na+、Mn2+/Na+、Cu2+/Na+和Zn2+/Na+显著升高,并且有效调控燕麦幼苗体内无机离子的运输...  相似文献   

7.
Banding patterns of nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) from leaves of diploid barley (Hordeum vulgare), tetraploid wheat (Triticum durum), hexaploid wheat (Triticum aestivum), and tetraploid wild oats (Avena barbata) were compared following starch gel electrophoresis. Two NR isozymes, which appeared to be under different regulatory control, were observed in each of the three species. The activity of the more slowly migrating nitrate reductase isozyme (NR1) was induced by NO3- in green seedlings and cycloheximide inhibited induction. However, the activity of the faster NR isozyme (NR2) was unaffected by addition of KNO3, and it was not affected by treatments of cycloheximide or chloramphenicol. Only a single isozyme of nitrite reductase was detected in surveys of three tetraploid and 18 hexaploid wheat, and 48 barley accessions; however, three isozymes associated with different ecotypes were detected in the wild oats. Inheritance patterns showed that two of the wild oat isozymes were governed by a single Mendelian locus with two codominant alleles; however, no variation was detected for the third isozyme. Treatment of excised barely and wild oat seedlings with cycloheximide and chloramphenicol showed that induction of NiR activity was greatly inhibited by cycloheximide, but only slightly by chloramphenicol. Only a single GS isozyme was detected in extracts of green leaves of wheat, barley, and wild oat seedlings. No electrophoretic variation was observed within or among any of these three species. Thus, this enzyme appears to be the most structurally conserved of the three enzymes.  相似文献   

8.
The effect of controlled proteolysis on the plasma membrane (PM)Ca2+-ATPase was studied at the molecular level in PM purified from radish (Raphanus sativus L.) seedlings. Two new methods for labeling the PM Ca2+-ATPase are described. The PM Ca2+-ATPase can be selectively labeled by treatment with micromolar fluorescein isothiocyanate (FITC), a strong inhibitor of enzyme activity. Both inhibition of activity and FITC binding to the PM Ca2+-ATPase are suppressed by millimolar MgITP. The PM Ca2+-ATPase maintains the capability to bind calmodulin also after sodium dodecyl sulfate gel electrophoresis and blotting; therefore, it can be conveniently identified by 125l-calmodulin overlay in the presence of calcium. With both methods a molecular mass of 133 kD can be calculated for the PM Ca2+-ATPase. FITC-labeled PM Ca2+-ATPase co-migrates with the phosphorylated intermediate of the enzyme[mdash]labeled by incubation with [[gamma]-32P]GTP in the presence of calcium[mdash]on acidic sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Controlled trypsin treatment of purified PM determines a reduction of the molecular mass of the PM Ca2+-ATPase from 133 to 118 kD parallel to the increase of enzyme activity. Only the 133-kD but not the 118-kD PM Ca2+-ATPase binds calmodulin. These results indicate that trypsin removes from the PM Ca2+-ATPase an autoinhibitory domain that contains the calmodulin-binding domain of the enzyme.  相似文献   

9.
The effect of light on the activity of phospholipase D (PLD) in oat (Avena sativa L.) seedlings and the dependence of this enzyme activity on the regime of their illumination were studied. The PLD activity in etiolated seedlings was 1.5–2.0-fold higher than in green plants. The illumination of etiolated seedlings with white light resulted in a decrease in PLD activity to its level in the seedlings grown under light. In contrast, the transfer of green seedlings to darkness enhanced the activity of the enzyme up to its level in etiolated seedlings. The illumination of etiolated seedlings with red light inhibited the PLD as well. It was shown that this photoeffect decreased with seedling aging and correlated with a phytochrome content in plants. Far-red light reversed the effect of red light. The involvement of phytochrome in the control of the PLD activity is discussed.  相似文献   

10.
A factor catalyzing the in vitro degradation of oat phytochrome in crude extracts has been shown to be a proteolytic enzyme. The enzyme, an endoprotease, has been purified about 600-fold from dark-grown oat shoots by chromatography on ion exchange and molecular seive gels. The pH-activity curve is broad, with a maximum around pH 6.4. The enzyme is apparently dependent on the presence of reduced sulfhydryl groups for activity: low concentrations of reductants stimulate it, while inhibition has been obtained with a variety of sulfhydryl antagonists. High ionic strength conditions are inhibitory. A molecular weight of 61,500 has been estimated, though autolysis may yield smaller active fragments. An enzyme with similar properties has been isolated from imbibed oat seeds, light-grown oat shoots, and dark-grown rye shoots.  相似文献   

11.
The effect of phospholipids on Triton X-100 solubilized (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes has been examined. The enzyme activity was increased by phosphatidylinositol, phosphatidylserine, and phosphatidic acid at both low (2 micrometer) and high (65 micrometer) free Ca2+ concentrations, while phosphatidylcholine had little effect and phosphatidylethanolamine and cardiolipin inhibited the (Ca2+ + Mg2+)-ATPase activity at all Ca2+ concentrations studied. The diacylglycerol, diolein, inhibited the enzyme at high, but not low, Ca2+ concentrations. Low concentrations of phospholipase A2 (1-2 international units) also activated the solubilized enzyme, at least in part by releasing free fatty acids, as the activation was mimicked by oleic acid (1-2 mumol/mg protein) and was abolished by fatty acid depleted bovine serum albumin. The combined activation by saturating levels of phosphatidylserine and calmodulin was additive at 6.5 mM MgCl2, and probably occurred at distinct sites on a regulatory component of the enzyme. The activation by both effectors was antagonized by MgCl2 at similar concentrations. Analysis of various models suggested that phosphatidylserine had two effects on (Ca2+ + Mg2+)-ATPase activity. First, a low Ca2+ affinity form of the enzyme was converted to a high Ca2+ affinity form, which was more sensitive to Ca2+ inhibition. Second, it increased the turnover of the enzyme, probably by enhancing its dephosphorylation, which was mimicked in this study by the Ca2+-dependent p-nitrophenylphosphatase partial reaction.  相似文献   

12.
含黄素单胺氧化酶(MAO)在生物体内通过对单胺类物质的氧化脱氨作用生成相应的醛、氨气和过氧化氢。MAO在植物中的研究较少,通过对燕麦幼苗MAO的研究发现,暗条件下生长的燕麦幼苗匀浆内所含MAO活性均高于光照条件,且发芽三天左右的幼苗体内MAO的活性达到峰值(2.5pKat/mg),同时测定不同组织中MAO的活性为:幼芽>幼根>种子。对纯化后的燕麦MAO的热稳定性和催化特性研究表明:燕麦MAO的热稳定性较差,常温下易失活,37℃和50℃下水浴90min后,活性损失分别为50%和75%;燕麦MAO对底物的选择性较强,只对低浓度的苄胺和苯乙胺的氧化具有催化效果,Km分别为265μmol/L和705μmol/L;在对底物的特异性方面与人类MAO B有一定的相似性,但体外催化效率低于黑曲霉MAO和人类MAO B。  相似文献   

13.
Phospholipase D (PLD) activity was found to be higher in etiolated oat seedlings than in green seedlings. White and red (R) light exposure inhibited PLD activity in etiolated seedlings. Far-red light eliminated R-light-induced decrease in PLD activity, indicating phytochrome participation in observed photomodulation. Inhibitor of electron transport in chloroplast 3-(3,4-dichlorophenyl)-1,1-dimethylurea stimulated and glucose suppressed PLD activity in green and etiolated oat seedlings, respectively. These results suggest that PLD activity in oat seedling is regulated by light with involvement of phytochrome photoreceptor, and associated with photosynthesis process.  相似文献   

14.
Plasma membranes of many mammalian cells contain a Mg2+-dependent ATPase activity which is easily inactivated by detergents. This activity is the combined expression of at least two ATP-hydrolyzing enzymes (Knowles, A.F., Isler, R.E., and Reece, J.F. (1983) Biochim. Biophys. Acta 731, 88-96). We have purified one of these enzymes from the plasma membranes of a human oat cell carcinoma xenograft. The enzyme was extracted from the membranes by 0.5% digitonin and purified on a DE52 column. The purified enzyme contained a major protein band of Mr = 30,000 when dissociated by sodium dodecyl sulfate. It hydrolyzed all nucleoside triphosphates in the presence of Mg2+ or Ca2+, but showed little activity toward nucleoside diphosphates. The enzyme was inhibited by p-chloromercuriphenyl sulfonate, slowly inactivated by p-fluorosulfonylbenzoyl-5'-adenosine and dithiothreitol at room temperature, and lost activity readily in solutions containing low concentrations of several detergents. This knowledge of the macromolecular structure of the Mg2+(Ca2+)-ATPase and its catalytic properties is important in determining the orientation of the enzyme in the membrane and its physiological function.  相似文献   

15.
The pH optimum for the stability of the barley leaf polyamine oxidase is 4.8, which is also the pH optimum for its activity with spermine as substrate. Zonal centrifugation indicates that the enzyme is associated with a particle which is slightly more dense than chloroplasts, and the peak of activity corresponds with the peak of nucleic acid. Neither DNase nor RNase released the enzyme from the particles, despite the hydrolysis of more than 50% of the nucleic acid. The enzyme from the leaves of oat seedlings grown in the dark was purified 900-fold. Mg2+ and Ca2+ inhibited both barley and oat enzymes by ca 50% at 50 mM. The optimum pH for both spermine and spermidine oxidation by the oat enzyme was 6.5. The MW of the enzyme from both sources determined by gel chromatography was ca 85 000.  相似文献   

16.
A bioassay is described which uses young oat seedlings to determine the activity of wild oat herbicides alone and in mixtures with other xenobiotics. Test solution (10 μl) was pipetted into the first leaf sheath of the oat seedlings, and 24 to 48 h later, basal shoot sections were removed and cultured for 24 h on agar. The inhibition of leaf growth from these sections, compared with control sections, was an assessment of herbicidal activity. Marked inhibition occurred when as little as 0–5 to 1 -0 μg of either diclofop-methyl or diclofop had been applied to each plant. Wheat and barley seedlings were unaffected by 12 μg of these herbicides, reflecting their known selectivity in cereal crops. The assay was used to evaluate the antagonisms of diclofop-methyl and diclofop activity by 2,4-D, MCPA, 2,3,6-TBA and also related ‘non-auxins’ (3,5-dichloro-phenoxyacetic acid and 2,3,5-TIBA). Diclofop-methyl was compatible with the 1-methylheptyl ester of (4-amino-3,5-dichloro-6-fluoro-2-pyridyl)oxyacetic acid (Dowco 433). The test allows the simultaneous examination of herbicidal responses and related metabolic changes in the oat tissue. As the procedure uses small amounts of chemical, it is suitable for 14C tracer studies and other investigations for v/hich research chemicals are not freely available. The use of the test with other species and other herbicides is discussed, and possible applications for screening for crop safeners and investigations on crop tolerance are suggested.  相似文献   

17.
The cold-acclimation effects on the Ca2 + -ATPase activities in plasmolemma of the winter wheat seedlings ( Triticum aestivum L. ) were studied with electromicmscopic-cytochemical assay in which cerium trichloride precipitation method was adopted. The main conclusions are: (1) The plasmolemma Ca2+ -ATPase activities of the wheat seedlings treated at –9 ℃ for 3 h decreased considerably as compared with those of the seedlings grown at the optimal temperature of 20 ℃. A further impediment of the enzyme activities was observed when the cold-stress was prolonged to 12 h at –9 ℃. And complete enzyme inactivation as well as damage of ultrastructure of cells occurred when the seedlings were subjected to cold-stress at –9 ℃ for 24 h. (2) If seedlings were cold-ac- climated at 2 ℃ for 15 d, the plasmolemma Ca2 + -ATPase activities were higher than those of the non-acclimated seedlings. When the cold-acclimated seedlings were then treated at –9 ℃ for 3 h, the enzyme activities decreased less markedly than those of the non-acclimated seedings under the same treatment condition. Similarly, under prolonged cold-stress of both seedlings at – 9 ℃ for 12 h, the enzyme activities of the cold-acclimated seedlings still kept higher than those of the non-ac- climated ones. Finally, when the cold-stress lasted for 24 h at – 9 ℃, the enzyme activities of the cold acclimated seedlings remained active, and the cellular ultrastructure also remained unchanged. The above results indicate that cold-acclimation has enhanced the stability of the plasmolemma Ca2 + -ATPase activities of the winter seedlings under low temperature stress.  相似文献   

18.
1. Alkaline phosphatase (EC 3.1.3.1.) from harp seal (Phagophilus groenlandicus) has been purified by concanavalin A-Sepharose chromatography to homogeneity with a specific activity of 1200-1500 units/mg of protein. 2. The mol. wt of the enzyme and its subunits were estimated as 260,000 and 70,000, respectively. By chromatofocusing the isoelectric point of this enzyme is 5.5. 3. With p-nitrophenylphosphate, pH-optimum and KM for the enzyme are 9.8 and 0.9 mM, respectively. 4. The enzyme was strongly inhibited by Sn4+, Fe3+ and Zn2+, whereas Mg2+ and Mn2+ were effective activators of the enzyme. Seal alkaline phosphatase was slightly inhibited by high concentrations of Ca2+ and Cr3+. 5. The enzyme activity reached a maximum at 55-60 degrees C. It was shown that the heat stability of seal and calf intestinal alkaline phosphatases were equal at 37 and 56 degrees C.  相似文献   

19.
An endochitinase from centrifuged autolyzed cultures of Aspergillus nidulans has been purified 100 times. The enzyme has Mw 27,000, pI of 4.8 units, pH optimum around 5 pH units. It is unstable at temperature greater than 70 degrees C and does not have a cation requirement. It is inhibited by Hg2+, Cu2+, Ca2+ and Ag+ and it does not have muramidase activity. The enzyme depolymerizes chitin rapidly with production of high molecular weight polysaccharides, and then slowly degrades these with production of N,N'-diacetylchitobiose. The enzyme hydrolyzes N,N',N'-triacetylchitotriose with production of N,N'-diacetylchitobiose and N-acetylglucosamine and this hydrolysis is inhibited by other chitin oligomers and N-acetylglucosamine. This enzyme hydrolyzes in the same way the chitin obtained from the cell wall of Aspergillus nidulans.  相似文献   

20.
Oat beta-glucosidase in plastid hydrolyzes avenacosides to C26-desgluco-avenacosides to combat against fungal infections. The enzyme has a unique quaternary protein structure of a three-dimensionally radiated assembly of long fibrillae. We elucidated the fibrillar assembly of oat type 1 beta-glucosidase by means of cryo-electron microscopy, enzyme kinetics and chemical modification. It was assembled by linear stacking of hollow trimeric units and the resulting fibril had a long central tunnel connecting to the outer medium via regularly distributed side fenestrations. The enzyme active sites were located within the central tunnel. This unique multimer assembly increased enzyme affinity to avenacosides, in vivo substrates, and may function to discriminate avenacosides from many other kinds of beta-glucoside in oat. The fibrillar multimer of oat beta-glucosidase is a novel quaternary protein structure for enzyme supramolecular assembly that may have a functional role in the regulation of enzyme affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号