首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While males gain obvious direct advantages from multiple mating, the reproductive capacity of females is more constrained. The reason why polyandry evolved in females is therefore open to many conjectures. One hypothesis postulates that females gain indirect benefits by increasing the probability of siring young from high quality males. To explore this hypothesis, we used the natural variation of the reproductive value that males and females undergo through age. The age-related variation of phenotypic performance might then induce variations in mating strategies in males and females. Using the common lizard (Lacerta vivipara) as our model system, we showed that reproductive immaturity and senescence created variability in both male and female reproductive success (including survival of offspring). Consistent with theory, males at their best-performing phenotype adopted a polygynous strategy. These males were of an intermediate age and they produced offspring of higher viability than younger and older males. In contrast, females at their best performing phenotype, also of an intermediate age, were less polyandrous than other less-performing females. Middle-aged females tended to mate with males of an intermediate age and produced litters with higher viability independently from their reproductive strategy. Males of an intermediate age enhanced their fitness by additional matings with young or old females. Young and old females increased their fitness by being more polyandrous. Polyandry therefore appears as means to seek for good males. A positive correlation between males and their partners' fitness disagree with the idea that polyandry is the result of a sexual conflict in this species.  相似文献   

2.
In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4‐year pedigree to investigate if time spent in two distinct life history stages has sex‐specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: ?33.9% offspring/FW and ?32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex‐specific consequence on female reproductive fitness, demonstrating a life history trade‐off between maturation and reproduction in wild Atlantic salmon.  相似文献   

3.
To compare the fitness of philopatric and immigrant individuals we examined the lifetime reproductive success of 116 male and 137 female great reed warblers. The study was carried out in a semi-isolated population in Sweden and covered breeding adults hatched between 1985 and 1993. Lifetime fitness, measured as life time number of fledglings and offspring recruits, was lower for immigrant than for philopatric males. We found no such relationships for females. The difference in reproductive success could not be explained by immigrant males having lower phenotypic quality because they had similar life span, spring arrival date, and territory quality as philopatric males. The lower lifetime fitness among immigrant than philopatric males appeared to result from reduced mating success. This suggests that females are reluctant to mate with immigrant males despite their apparently similar phenotypic quality. Though it is not known whether females gain in fitness by avoiding matings with immigrant males, it is notable that immigrant males have smaller song repertoires than philopatric males. Large repertoires, previously shown to sexually arouse great reed warbler females, correlate with the occurrence of extrapair paternity and postfledging survival of offspring in our population.  相似文献   

4.
Female investment in offspring size and number has been observed to vary with the phenotype of their mate across diverse taxa. Recent theory motivated by these intriguing empirical patterns predicted both positive (differential allocation) and negative (reproductive compensation) effects of mating with a preferred male on female investment. These predictions, however, focused on total reproductive effort and did not distinguish between a response in offspring size and clutch size. Here, we model how specific paternal effects on fitness affect maternal allocation to offspring size and number. The specific mechanism by which males affect the fitness of females or their offspring determines whether and how females allocated differentially. Offspring size is predicted to increase when males benefit offspring survival, but decrease when males increase offspring growth rate. Clutch size is predicted to increase when males contribute to female resources (e.g. with a nuptial gift) and when males increase offspring growth rate. The predicted direction and magnitude of female responses vary with female age, but only when per-offspring paternal benefits decline with clutch size. We conclude that considering specific paternal effects on fitness in the context of maternal life-history trade-offs can help explain mixed empirical patterns of differential allocation and reproductive compensation.  相似文献   

5.
Fisher DO  Blomberg SP 《PloS one》2011,6(1):e15226
Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20-40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females.  相似文献   

6.
ABSTRACT The effects of colony size on individual fitness and its components were investigated in artificially established and natural colonies of the social spider Anelosimus eximius (Araneae: Theridiidae). In the tropical rain forest understory at a site in eastern Ecuador, females in colonies containing between 23-107 females had india significantly higher lifetime reproductive success than females in smaller colonies. Among larger colonies, this trend apparently reversed. This overall fitness function was a result of the conflicting effects of colony size on different components of fitness. In particular, the probability of offspring survival to maturity increased with colony size while the probability of a female reproducing within the colonies decreased with colony size. Average clutch size increased with colony size when few or no wasp parasitoids were present in the egg sacs. With a high incidence of egg sac parasitoids, this effect disappeared because larger colonies were more likely to be infected. The product of the three fitness components measured-probability of female reproduction, average clutch size, and offspring survival-produced a function that is consistent with direct estimates of the average female lifetime reproductive success obtained by dividing the total number of offspring maturing in a colony by the number of females in the parental generation. Selection, therefore, should favor group living and itermediate colony sizes in this social spider.  相似文献   

7.
We used the "morphology-performance-fitness" paradigm (Arnold, 1983) as our framework to investigate endocrine control of performance and fitness in Sceloporus undulatus (Eastern Fence Lizard). Focusing on males, we used the "natural experiments" of seasonal, sexual, and developmental variation in growth and in exercise endurance to identify testosterone and corticosterone as potential modulators of performance and related traits of interest. We followed with experimental manipulations of testosterone to investigate functional relationships, both in the laboratory and in the field. Further, we used focal observations and demographic studies, coupled with genetic determination of paternity, to test associations between performance and fitness, measured as reproductive success. We found that in males, endurance and plasma concentrations of testosterone and corticosterone are at their peaks in the spring breeding season, when lizards are most actively engaged in patrolling home ranges and in reproductive behavior. At that time, plasma concentrations of testosterone are correlated with body size; plasma concentrations of corticosterone and parameters of home range, including area and the number of overlapped females, are correlated with home-range overlap between males and females. During prereproductive development, males (but not females) experience a maturational increase in plasma testosterone. At about the same time, they become more active, expand their home ranges, and grow less quickly than do females, suggesting a trade-off in the allocation of energy, mediated by testosterone. Experimentally, testosterone has positive effects on fitness by stimulating endurance and reproductive activity and increasing home-range area, but it exacts costs in fitness by increasing ectoparasitism, decreasing growth, and decreasing survivorship. We found evidence of selection on body size, endurance, and home-range size (and thus access to potential mates). Despite having positive effects on performance traits, plasma concentrations of testosterone were not correlated with number of offspring sired by males. However, we found a strong correlation between the level of plasma corticosterone and the number of offspring sired. We also found evidence of size-assortative mating, indicating that for males, both the number and the size (and thus, fecundity) of their mates increase with body size. Our studies exemplify the power of natural history combined with experimental endocrine manipulations to identify hormonal regulators of performance and linkages to fitness. Furthermore, our results illustrate ecological and evolutionary significance of individual variation in endocrine traits.  相似文献   

8.
Perhaps the best way to determine whether and how traits of organisms are currently adaptive is to alter them experimentally and compare the relative fitness of altered and unaltered individuals. We call this method phenotypic engineering. To the extent that natural selection moulds organisms on a trait-by-trait basis, we would expect fitness of unmanipulated (control) individuals to be higher than that of experimentally altered individuals. However, other outcomes are possible and of interest. If, for example, a single trait were altered and the fitness of manipulated and unmanipulated organisms were found to be similar, we might conclude that selection is not currently operating on the altered trait. Phenotypic engineering with hormones describes an experimental approach to the study of adaptive variation in suites of traits that are hormonally mediated and correlated in their expression. A likely outcome of such manipulations is that some traits would be altered so as to elevate fitness but that changes in other, correlated traits would lower fitness. If the net effect were to depress fitness, a process by which natural selection shapes and maintains organisms as integrated units would be demonstrated. We have employed this approach in studies of the Dark-eyed Junco Junco hyemalis, a small passerine whose reproductive success varies with the abundance of nest predators. We treated males with testosterone, documented the phenotypic consequences and related these to various measures of fitness. Summarizing results to date: Behavioural comparison of males treated with testosterone (T-males) and control males (C-males) shows that T-males sing more frequently, are less attentive to offspring, have larger home ranges and are more attractive to females. Physiologically, testosterone accelerates entry into breeding condition in spring (loss of winter lipid stores) and results in higher levels of corticosterone. If exposure to testosterone is prolonged beyond the breeding season, pre-basic moult is delayed or prevented. We are currently comparing T- and C-males with respect to corticosteroid binding proteins, sperm reserves, response to nestling vocalizations and neuroanatomy. The relationship between testosterone-induced phenotypic variation and fitness is still under study. When treatment extends well beyond the breeding season, testosterone significantly reduces survivorship; otherwise it does not. With respect to apparent reproductive success (i.e. estimates of paternity that are not based on genetic analysis), more young leave the nests of C-males than of T-males, but treatment groups do not differ in the number of young that reach independence. Preliminary data on realized reproductive success (i.e. number of genetic offspring sired) suggest that production as the result of extra-pair fertilizations is greater in T- than in C-males but that T-males lose paternity of more of the offspring of their social mates to other males. Continued investigation will, we hope, reveal the factors governing the trade-offs between male mating effort and parental effort and between survival and current reproduction, as well as the frequency with which the typical phenotype outperforms one that has been experimentally altered.  相似文献   

9.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

10.
Body size strongly influences fitness, with larger individuals benefiting in terms of both greater productivity and survivorship; for reverse sexual size dimorphic (RSD) species, this relationship may be more complex. We examined the selection pressures acting on body size in male and female Merlins Falco columbarius to assess whether larger or smaller individuals of this RSD species were favoured in terms of survival and breeding performance. For males and females there were clear links between body size and survival but the exact relationship varied by sex. Among males, birds that survived each year class were larger than those that died and yearlings were on average smaller than older birds, but there were no measurable differences among adult males (age 2+). Among females, larger individuals aged 1 and 2 years were more likely to survive, but this size‐based pattern was not apparent in older age classes. Size early in life predicted the lifespan in male Merlins but not as strongly as for females and not for the largest individuals. Reproductive performance based on brood size was not associated with body size in either males or females, but there was a weak positive relationship between female body size and lifetime reproductive success. Selection appears to favour larger males and females but there is no indication that the population is evolving towards bigger individuals, perhaps in part due to selection against the largest birds. Increased survival may allow larger and higher quality individuals to occupy higher quality territories as they age and thereby to accrue greater lifetime reproductive success in the process.  相似文献   

11.
Across many fish species, large females tend to exhibit higher individual reproductive success due to elevated fecundity and the provisioning of better conditioned eggs and offspring compared to small females. By contrast, effects of paternal body size on reproductive success are less well understood. We disentangled the maternal- and paternal-size dependent effects on reproductive output and early life history in zebrafish (Danio rerio). In the laboratory, females and males from four size categories (small, medium-sized, large and very large) were allowed to spawn freely in a full factorial design with 10 replicates per size combination. As expected, larger females produced more eggs and better conditioned offspring compared to smaller females. Male body size further contributed to zebrafish reproductive success: offspring sired by large males exhibited higher hatching probability and these offspring also hatched earlier and larger than offspring fertilized by small males. However, the largest males experienced lower mating success and received fewer eggs than males of the smaller size classes. While male body size substantially affected reproductive success in zebrafish, it remained unclear whether and to what degree direct paternal effects (e.g., related to sperm quality) or indirect paternal effects stemming from differential allocation patterns by females were the mechanism behind our findings. Answering this question constitutes an important future research topic.  相似文献   

12.
Demographic changes were recorded throughout a 12-year period for three social groups ofMacaca fascicularis in a natural population at Ketambe (Sumatra, Indonesia). We examined the prediction that females' lifetime reproductive success depended on dominance rank and group size. Average birth rate was 0.53 (184 infants born during 349 female years). For mature females (aged 8–20 yr) birth rate reflected physical condition, being higher in years with high food availability and lower in the year following the production of a surviving infant. High-ranking females were significantly more likely than low-ranking ones to give birth again when they did have a surviving offspring born the year before (0.50 vs 0.26), especially in years with relatively low food availability (0.37 vs 0.10). Controlled comparisons of groups at different sizes indicate a decline in birth rate with rroup size only once a group has exceeded a certain size. The dominance effect on birth rate tended to be strongest in large groups. Survival of infants was rank-dependent, but the survival of juveniles was not. There was a trend for offspring survival to be lower in large groups than in mid-sized or small groups. However, rank and group size interacted, in that rank effects on offspring survival were strongest in large groups. High-ranking females were less likely to die themselves during their top-reproductive years, and thus on average had longer reproductive careers. We estimated female lifetime reproductive success based on calculated age-specific birth rates and survival rates. The effects of rank and group size (contest and scramble) on birth rate, offspring survival, age of first reproduction for daughters, and length of reproductive career, while not each consistently statistically significant, added up to substantial effects on estimated lifetime reproductive success. The group size effects explain why large groups tend to split permanently. Since females are philopatric in this species, and daughters achieve dominance rank positions similar to their mother, a close correlation is suggested between the lifetime reproductive success of mothers and daughters. For sons, too, maternal dominance affected their reproductive success: high-born males were more likely to become top-dominant (in another group). These data support the idea that natural selection has favored the evolution of a nepotistic rank system in this species, even if the annual benefits of dominance are small.  相似文献   

13.
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.  相似文献   

14.
ABSTRACT: BACKGROUND: Maternal effects are environmental influences on the phenotype of one individual that are due to the expression of genes in its mother, and are expected to evolve whenever females are better capable of assessing the environmental conditions that their offspring will experience than the offspring themselves. In the dung beetle Onthophagus taurus, conditional male dimorphism is associated with alternative reproductive tactics: majors fight and guard females whereas minors sneak copulations. Furthermore, variation in dung beetle population density has different fitness consequences for each male morph, and theory predicts that higher population density might select for a higher frequency of minors and/or greater expenditure on weaponry in majors. Because adult dung beetles provide offspring with all the nutritional resources for their development, maternal effects strongly influence male phenotype. RESULTS: Here we tested whether female O. taurus are capable of perceiving population density, and responding by changing the phenotype of their offspring. We found that mothers who were reared with other conspecifics in their pre-mating period produced major offspring that had longer horns across a wider range of body sizes than the major offspring of females that were reared in isolation in their pre-mating period. Moreover, our results indicate that this maternal effect on male weaponry does not operate through the amount of dung provided by females to their offspring, but is rather transmitted through egg or brood mass composition. Finally, although theory predicts that females experiencing higher density might produce more minor males, we found no support for this, rather the best fitting models were equivocal as to whether fewer or the same proportions of minors were produced. CONCLUSIONS: Our study describes a new type of maternal effect in dung beetles, which probably allows females to respond to population density adaptively, preparing at least their major offspring for the sexual competition they will face in the future. This new type of maternal effect in dung beetles represents a novel transgenerational response of alternative reproductive tactics to population density.  相似文献   

15.
The number of offspring attaining reproductive age is an important measure of an individual's fitness. However, reproductive success is generally constrained by a trade-off between offspring number and quality. We conducted a factorial experiment in order to study the effects of an artificial enlargement of offspring number and size on the reproductive success of female bank voles (Clethrionomys glareolus). We also studied the effects of the manipulations on growth, survival and reproductive success of the offspring. Potentially confounding effects of varying maternal quality were avoided by cross-fostering. Our results showed that the number of offspring alive in the next breeding season was higher in offspring number manipulation groups, despite their smaller body size at weaning. Offspring size manipulation had no effect on offspring growth or survival. Further, the first litter size of female offspring did not differ between treatments. In conclusion, females may be able to increase the number of offspring reaching reproductive age by producing larger litters, whereas increasing offspring size benefits neither the mother nor the offspring.  相似文献   

16.
Yolk androgens affect offspring hatching, begging, growth and survival in many bird species. If these effects are sex-specific, yolk androgen deposition may constitute a mechanism for differential investment in male and female offspring. We tested this hypothesis in zebra finches. In this species, females increase yolk-testosterone levels and produce male-biased sex ratios when paired to more attractive males. We therefore predicted that especially sons benefit from elevated yolk androgens. Eggs were injected with testosterone or sesame oil (controls) after 2 days of incubation. Testosterone had no clear effect on sex-specific embryonic mortality and changed the pattern of early nestling mortality independent of offspring sex. Testosterone-treated eggs took longer to hatch than control eggs. Control males begged significantly longer than females during the first days after hatching and grew significantly faster. These sex differences were reduced in offspring from testosterone-treated eggs due to prolonged begging durations of daughters, enhanced growth of daughters and reduced growth of sons. The results show that variation in maternal testosterone can play an important role in avian sex allocation due to its sex-specific effects on offspring begging and growth.  相似文献   

17.
Many studies investigate the benefits of polyandry, but repeated interactions with males can lower female reproductive success. Interacting with males might even decrease offspring performance if it reduces a female's ability to transfer maternal resources. Male presence can be detrimental for females in two ways: by forcing females to mate at a higher rate and through costs associated with resisting male mating attempts. Teasing apart the relative costs of elevated mating rates from those of greater male harassment is critical to understand the evolution of mating strategies. Furthermore, it is important to test whether a male's phenotype, notably body size, has differential effects on female reproductive success versus the performance of offspring, and whether this is due to male body size affecting the costs of harassment or the actual mating rate. In the eastern mosquitofish Gambusia holbrooki, males vary greatly in body size and continually attempt to inseminate females. We experimentally manipulated male presence (i.e., harassment), male body size and whether males could copulate. Exposure to males had strong detrimental effects on female reproductive output, growth and immune response, independent of male size or whether males could copulate. In contrast, there was a little evidence of a cross‐generational effect of male harassment or mating rate on offspring performance. Our results suggest that females housed with males pay direct costs due to reduced condition and offspring production and that these costs are not a consequence of increased mating rates. Furthermore, exposure to males does not affect offspring reproductive traits.  相似文献   

18.
The estimation of the relationship between phenotype and fitness in natural populations is constrained by the distribution of phenotypes available for selection to act on. Because selection is blind to the underlying genotype, a more variable phenotypic distribution created by using environmental effects can be used to enhance the power of a selection study. I measured selection on a population of adult damselflies (Enallagma boreale) whose phenotype had been modified by raising the larvae under various levels of food availability and density. Selection on body size (combination of skeletal and mass at emergence) and date of emergence was estimated in two consecutive episodes. The first episode was survival from emergence to sexual maturity and the second was reproductive success after attaining sexual maturity. Female survival to sexual maturity was lower, and therefore opportunity for selection greater, than males in both years. Opportunity for selection due to reproductive success was greater for males. The total opportunity for selection was greater for males one year and for females the other. Survival to sexual maturity was related to mass gain between emergence and sexual maturity. Females gained more mass and survived less well than males in both years but there was no linear relationship between size at emergence and survival for females in either year. However, females in the tails of the phenotype distribution were less likely to survive than those near the mean. In contrast, small males consistently gained more mass than large males and survived less well in one year. There was significant selection on timing of emergence in both years, but the direction of selection changed due to differences in weather; early emerging females were more successful one year and late emerging males and females the other. The number of clutches laid by females was independent of body size. Because the resources used to produce eggs are acquired after emergence and this was independent of size at emergence, female fitness did not increase with size. Small males may have had lower survival to sexual maturity but they had higher mating success than large males. Resources acquired prior to sexual maturity are essential for reproductive success and may in some species alter their success in inter- and intrasexual competition. Therefore, ignoring the mortality associated with resource acquisition will give an incomplete and potentially misleading picture of selection on the phenotype.  相似文献   

19.
Recent studies on mammals investigating parent-of-origin-specific effects such as genomic imprinting and maternal effects have demonstrated their impact on short-term measures of fitness, for example offspring growth. However, the long-term fitness consequences of parent-of-origin-specific effects and their role outside the immediate mother-offspring interaction remain largely unexplored. Here, we show that female mice mated to males that inherited the same set of paternal and maternal genes as themselves have a higher reproductive success than females mated to males of reciprocal genotype. Furthermore, we demonstrate that the early social environment experienced by an individual influences its reproductive success. Females raised with unrelated siblings in a mixed litter had a subsequent lower reproductive success than those that were fostered together with all their biological siblings in unmixed litters. Our results highlight the important influence of parent-of-origin-specific effects and conditions in early development on long-term reproductive success in mammals and suggest that parent-of-origin-specific effects may provide the underlying mechanism for beneficial coadaptation between genotypes, for example, in mate choice.  相似文献   

20.
Whether sexual selection increases or decreases fitness is under ongoing debate. Sexual selection operates before and after mating. Yet, the effects of each episode of selection on individual reproductive success remain largely unexplored. We ask how disentangled pre- and post-copulatory sexual selection contribute to fitness of field crickets Gryllus bimaculatus. Treatments allowed exclusively for (i) pre-copulatory selection, with males fighting and courting one female, and the resulting pair breeding monogamously, (ii) post-copulatory selection, with females mating consecutively to multiple males and (iii) relaxed selection, with enforced pair monogamy. While standardizing the number of matings, we estimated a number of fitness traits across treatments and show that females experiencing sexual selection were more likely to reproduce, their offspring hatched sooner, developed faster and had higher body mass at adulthood, but females suffered survival costs. Interestingly, we found no differences in fitness of females or their offspring from pre- and post-copulatory sexual selection treatments. Our findings highlight the potential for sexual selection in enhancing indirect female fitness while concurrently imposing direct survival costs. By potentially outweighing these costs, increased offspring quality could lead to beneficial population-level consequences of sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号