首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rhythmic movement of excised Samanea saman pulvini incubated in H(2)O or 50 mm sucrose was monitored during extended periods of white light (cool white fluorescent, 2,000 ft-c), darkness, or alternating white light (16 hr) and darkness (8 hr). In continuous white light, the rhythm damps at an intermediate angle after only one cycle, whether pulvini are incubated in sucrose or H(2)O. The rhythm also damps after the first cycle when darkened pulvini are incubated in H(2)O, but it persists for several cycles if sucrose is available. Sucrose depresses the mesor (average angle) during extended dark periods in Samanea, as in Albizzia julibrissin, but it increases the mesor if supplied during white light-dark cycles. With the latter irradiation schedule, oscillations persist for several cycles whether pulvini are supplied with H(2)O or sucrose, but closure is incomplete when pulvini are incubated in sucrose.  相似文献   

2.
The opening of excised Samanea saman pulvini is promoted by prolonged blue or far-red irradiation. Far-red effects are attributed partially but not completely to lowering of the Pfr level. Two hours of continuous or pulsed blue light or pulsed far-red light (total dosage = 2.2 × 1018 quanta per square centimeter in all cases) also phase shifts the rhythm in Samanea while two hours of continuous blue light phase shifts the rhythm in the related plant Albizzia julibrissin. The same pigments appear to regulate opening and rhythmic phase shifting. The blue light-induced phase response curve has smaller advance and delay peaks and differs in shape from the curve induced by brief red light pulses absorbed by phytochrome. The blue absorbing pigment has not been identified, but it does not appear to be phytochrome acting in a photoreversible mode.  相似文献   

3.
Summary. We have analysed the incorporation of [3H]sucrose and [3H]mannitol in pulvinar motor cells of Robinia pseudoacacia L. during phytochrome-mediated nyctinastic closure. Pairs of leaflets, excised 2 h after the beginning of the photoperiod, were fed with 50 mM [3H]sucrose or [3H]mannitol, irradiated with red (15 min) or far-red (5 min) light and placed in the dark for 2–3 h. Label uptake was measured in whole pulvini by liquid scintillation counting. The distribution of labelling in pulvinar sections was assessed by both light and electron microautoradiography. [3H]Sucrose uptake was twice that of [3H]mannitol incorporation in both red- and far-red-irradiated pulvini. In the autoradiographs, [3H]sucrose and [3H]mannitol labelling was localised in the area from the vascular bundle to the epidermis, mainly in vacuoles, cytoplasm, and cell walls. Extensor and flexor protoplasts displayed a different distribution of [3H]sucrose after red and far-red irradiation. Far-red light drastically reduced the [3H]sucrose incorporation in extensor protoplasts and caused a slight increase in internal flexor protoplasts. After red light treatment, no differences in [3H]sucrose labelling were found between extensor and flexor protoplasts. Our results indicate a phytochrome control of sucrose distribution in cortical motor cells and seem to rule out the possibility of sucrose acting as an osmoticum. Correspondence and reprints: Unidad de Fisiología Vegetal, Facultad de Biología, Universidad de Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain.  相似文献   

4.
Constant red light (RR) influences the Gonyaulax clock in several ways: (1) Phase resetting by white or blue light pulses is stronger under background RR than in constant white light (WW); (2) frequency of the rhythm is less in RR than in WW; and (3) the amplitude of the spontaneous flashing rhythm is greater in RR than in WW. The phase response curve (PRC) to 4-hr white or blue light pulses is of high amplitude (Type 0) for cells in RR, but is of lower amplitude (Type 1) for cells in WW. In all cases, the PRC is highly asymmetrical: The magnitude of advance phase resetting is far higher than that of delay resetting. Consistent with this PRC, Gonyaulax cells in RR (free-running period greater than 24 hr) will entrain to T cycles of between 21 and 26.5 hr. The bioluminescence rhythms exhibit "masking" by blue light pulses while entrained to these T cycles. The fluence response of phase resetting to light-pulse intensity is not linear or logarithmic--rather, it is discontinuous. This feature is consistent with a limit cycle interpretation of Type 0 resetting of circadian clocks. Light pulses that cause large phase shifts also shorten the subsequent free-running period. The phase angle difference between the clock and the previous LD cycle is within 2 hr of the same phase between 16 degrees C and 25 degrees C, as determined from the light PRCs at various temperatures. Several drugs that inhibit mitochondria and/or electron transport will partially inhibit the phase shift by light.  相似文献   

5.
A circadian rhythm in oxygen uptake by samanea pulvini   总被引:2,自引:2,他引:0       下载免费PDF全文
Satter RL 《Plant physiology》1979,64(3):379-381
The rate of O2 uptake by excised Samanea pulvini oscillates with a circadian rhythm during 52 hours of darkness. Rates of respiration increase during pulvinar opening and decrease prior to and during closure, consistent with the concept that opening requires a greater expenditure of energy. Externally supplied sucrose, necessary for perpetuation of the leaflet movement rhythm, has a small promotive effect on the rate of respiration.  相似文献   

6.
7.
The circadian leaf movement of Oxalis regnellii Mig, has been investigated. The three leaflets of a stalk were normally synchronized, and under the experimental conditions chosen they showed a period of 26.2 ± 0.1 h. Cutting off one or two leaflets led to a successive decrease of the period length (25.7 ± 0.1 and 25.1 ± 0.3 h resp.). It was possible to phase shift the leaf movements by mechanical means (advance of 1.6 ± 0.3 h).
Lithium ions, added permanently to the transpiration stream, increased the period length of the leaf movements by more than one hour (with 10 m M Li+). A 24 h pulse of 20 m M LiCl caused a permanent 2–3 h phase delay of the circadian rhythm. Four-h pulses, on the other hand, provoked only transient phase delays, the magnitude being dependent on the phase of application. Lithium concentrations were determined for different regions of leaves and pulvini. It was shown that leaf segments had considerably lower concentrations than pulvini. No significant difference in the lithium concentration was observed between the upper and lower part of pulvini.
In the light leaf position was strongly correlated with water uptake and the consequences for applications of substances to the circadian system via the transpiration stream is discussed. A simple model of the oscillatory system and reactions connected to it is discussed.  相似文献   

8.
The circadian rhythm in growth of the red macroalga Porphyra umbilicalis (Linnaeus) J. Agardh was investigated under different spectral light conditions in laboratory-grown thalli. A free-running rhythm was observed in constant green or red light at irradiances of 2.5 to 20 μmol photons·m−2·s−1, whereas arhythmicity occurred in constant blue light at 6–20 μmol photons·m−2·s−1. The circadian oscillator controlling growth rhythmicity in Porphyra uses most of the visible sunlight spectrum and possibly multiple photoreceptors with a high sensitivity for blue light and a lower sensitivity for red light. This was inferred from three experimental results: (1) The free-running period, τ, of the growth rhythm decreased with increasing irradiance, from approximately 25 h at 2.5 μmol photons·m−2·s−1 to 22 h at 20 μmol photons·m−2·s−1 in red or green light, (2) Dark pulses of 3 h duration, interrupting otherwise continuous green or red light, caused advances during the subjective day and delays during the subjective night; the circadian oscillator in Porphyra can discriminate darkness from green or red light, and (3) Low-irradiance blue light pulses (2.5 μmol photons·m−2·s−1) shifted the growth rhythm in red light of higher irradiance (e.g. 10 μmol photons·m−2·s−1), and a strong, high amplitude, type 0 phase response curve was obtained that is usually observed with light pulses shifting a circadian rhythm in otherwise continuous darkness.  相似文献   

9.
Incubation of lettuce seeds (Lactuca sativa L. cv. Grand Rapids) in 0.3 m mannitol allows sufficient water uptake to make seeds fully sensitive to red light. But germination is possible only after lowering the osmotic potential of the incubation medium. The red light induction of these incompletely hydrated seeds can be reversed by far red light. Their reversibility declines with time at a slower rate than seeds incubated in water. About half the seeds in 0.3 m mannitol respond to far red light when all seeds in water have escaped control by far red light. Close to 100% of the seeds remain sensitive to far red exposure if 0.6 m mannitol is used as osmoticum. The retention of the original red light stimulus is inversely related to the concentration of the incubation medium.The fresh weight of viable seeds incubated with water or with an osmoticum increases rapidly during the first 5 hours, then remains stationary for about 12 hours. After that only germinating seeds experience a second increase in fresh weight. Heat-killed seeds do not show such a discontinuity in water uptake.  相似文献   

10.
The control by light of the flowering response rhythm in the short-day plant Pharbitis nil Choisy cv. Violet was examined by giving a single pulse of light at various times between 1 and 6 h after a 24-h light period. When the first circadian cycle of the rhythm was monitored, it was found that a pulse of red light given at 1, 2 or 3 h into a 72-dark period caused a 1-h delay of the phase of the response rhythm, while a pulse at 6 h caused a 2-h delay. These results support the hypothesis that, when red-light pulses are given at hourly intervals, they are as effective as continuous light in preventing the onset of dark timing because they repeatedly return the rhythm to the circadian time at which it is apparently suspended in continuous light. The perception of and response to continuous light and red-light pulses are also briefly discussed.  相似文献   

11.
Irene Bollig 《Planta》1977,135(2):137-142
The phase shifting effect of red light on both the leaf movement rhythm, and on the rhythm of responsiveness of photoperiodic flower induction towards short light breaks (10 min red light), has been studied in Pharbitis nil, strain Violet, and comparisons between the two rhythms have been made. The phase angle differences between the rhythms after a phase shift with 2 or 6 h of red light given at different times during a long dark period were not constant. The results indicate the involvement of two different clocks controlling leaf movement and photoperiodic flower induction.Abbreviations DD continuous darkness - l:D x:y light/dark cycles with x hours of light and y hours of darkness - PPR rhythm of photoperiodic responsiveness towards light break  相似文献   

12.
The blue light photopigment cryptochrome (CRY) is thought to be the main circadian photoreceptor of Drosophila melanogaster. Nevertheless, entrainment to light-dark cycles is possible without functional CRY. Here, we monitored phase response curves of cry(01) mutants and control flies to 1-hour 1000-lux light pulses. We found that cry(01) mutants phase-shift their activity rhythm in the subjective early morning and late evening, although with reduced magnitude. This phase-shifting capability is sufficient for the slowed entrainment of the mutants, indicating that the eyes contribute to the clock's light sensitivity around dawn and dusk. With longer light pulses (3 hours and 6 hours), wild-type flies show greatly enhanced magnitude of phase shift, but CRY-less flies seem impaired in the ability to integrate duration of the light pulse in a wild-type manner: Only 6-hour light pulses at circadian time 21 significantly increased the magnitude of phase advances in cry(01) mutants. At circadian time 15, the mutants exhibited phase advances instead of the expected delays. These complex results are discussed.  相似文献   

13.
We investigated the phase-dependent effects of light wavelength on photoperiodic clock in the migratory blackheaded bunting. Two experiments were performed, employing a skeleton paradigm (6 hours light : 6 hours darkness : 1 hour light : 11 hours darkness; 6L : 6D : 1L : 11D) at 37 ± 2 lux intensity. In the experiment 1, both 6 and 1 h light pulses were given at the same wavelength, 500 nm (green) or 650 nm (red). A group exposed to both pulses of white light served as control. In the experi-ment 2, the two light pulses were given at two different wavelengths, 6 h at 500 nm (green) and 1 h at 640 nm (red) in one group or vice-versa in the other. There was almost no photoinduction when both light pulses in experiment 1, or 1 h light pulse in experiment 2, were green. On the other hand, birds fattened and testes recrudesced when both the light pulses in experiment 1, or 1 h light pulse in experiment 2, were red. Birds receiving both pulses of white light in experiment 1 showed an intermediate response. Taken together, these results indicate that the photoperiodic clock in buntings is differentially responsive at its various circadian phases to different light wavelengths.  相似文献   

14.
We investigated the phase-dependent effects of light wavelength on photoperiodic clock in the migratory blackheaded bunting. Two experiments were performed, employing a skeleton paradigm (6 hours light : 6 hours darkness : 1 hour light : 11 hours darkness; 6L : 6D : 1L : 11D) at 37 ± 2 lux intensity. In the experiment 1, both 6 and 1 h light pulses were given at the same wavelength, 500 nm (green) or 650 nm (red). A group exposed to both pulses of white light served as control. In the experi-ment 2, the two light pulses were given at two different wavelengths, 6 h at 500 nm (green) and 1 h at 640 nm (red) in one group or vice-versa in the other. There was almost no photoinduction when both light pulses in experiment 1, or 1 h light pulse in experiment 2, were green. On the other hand, birds fattened and testes recrudesced when both the light pulses in experiment 1, or 1 h light pulse in experiment 2, were red. Birds receiving both pulses of white light in experiment 1 showed an intermediate response. Taken together, these results indicate that the photoperiodic clock in buntings is differentially responsive at its various circadian phases to different light wavelengths.  相似文献   

15.
Abstract: Light has at least two distinguishable effects on the circadian rhythm of melatonin output displayed by dispersed chick pineal cells in static culture: acute suppression of melatonin output and entrainment (phase shifts) of the underlying pacemaker. Previous results indicated that these two effects of light are mediated by different mechanistic pathways. The pathways for the acute and phase-shifting effects of light either branch from the same, single photopigment or differ from the outset, starting from separate photopigments. If a single rhodopsin-like photopigment mediates both effects of light, then vitamin A depletion and retinoid addition should affect both responses in parallel, although not proportionately. We therefore compared the effects of vitamin A depletion and retinoid addition on the acute and phase-shifting effects of light under several experimental conditions. When chick pineal cells were depleted of vitamin A, acute responses to light were markedly reduced. Addition of 11-cis-retinaldehyde specifically restored (and enhanced) the acute response. When allowed to free run in constant red light, depleted cells displayed a rhythm of melatonin output with the same period as that of control cells. In contrast to the acute effects, phase shifts in response to 2- or 4-h light pulses did not differ between depleted and control cells. Addition of retinaldehyde to depleted cells did not, by itself, reduce melatonin output or induce phase shifts. Retinaldehyde did increase the acute response to 4-h light pulses but not the ensuing phase shifts. Responses increased with duration of the light pulse: Both the acute effect and the phase shifts induced by 4-h light pulses were considerably larger than those induced by 2-h (or 1-h) light pulses. Addition of retinaldehyde to depleted cells increased the acute effect of 2-h (or 1-h) light pulses to at least that seen with 4-h light pulses but did not Increase the size of the ensuing phase shifts. These results strongly confirm previous dissociations of the mechanistic pathways mediating the acute and phase-shifting effects of light on chick pineal cells. They also support a role for rhodopsin-like photopigment in the acute, but not phase-shifting, response. They favor, but do not prove, the conclusion that separate photopigments mediate the acute and entraining effects of light.  相似文献   

16.
Spores of Polytrichum conwtuine were grown on a mineral salt solution with or without sucrose and exposed to continuous white light, continuous darkness, red light and/or far-red light. With sucrose, germination and filament growth occurred in all conditions, Without sucrose, germination and filament growth occurred only in light. Two phytochrome mediated responses of the chloroplasts were demonstrated. Chloroplast replication occurred in continuous white light and red light of 15 min/6 hours. In continuous darkness and in far red light of 15 min/6 hours, the size of the chloroplasts increased; but no replication occurred. Both the chloroplast replication and chloroplast size were red, far-red light reversible. When changed from one continuous light environment to another, a lag period occurred before the chloroplasts responded to the new environment. Electron micrographs of sections and in vivo staining of the chloroplasts with iodine solution demonstrated that the change in size of the chloroplasts was at least partially due to the synthesis and degradation of starch.  相似文献   

17.
The flowering of Lemma perpusilla grown on half-strength Hutner's medium with sucrose under inductive photo-periods is inhibited in a periodic manner by daily transfers to water for short periods of time. The phase of maximal inhibition of flowering caused by water treatment is about 1 to 2 hours after the time of maximal sensitivity to light pulses. The rhythm of sensitivity to water treatments does not persist under continuous blue light. Supplementing the water with either Ca(NO3)2 or K2HPO4 partially reverses the inhibition of flowering, with the first salt being more effective. Supplementation with NH4NO3 or MgSO4 increases the inhibition. The water effect on flowering is not observed in plants grown on half-strength Hutner's medium without sucrose. The water treatments may act by removing or destroying a crucial precursor for photoperiodic induction, with the other conditions modifying permeability. The system provides a new technique for investigating the mechanism of photoperiodic induction.  相似文献   

18.
Effect of abscisic acid on the circadian leaf movements of Oxalis regnellii   总被引:1,自引:0,他引:1  
The effect of abscisic acid on the circadian leaf movements of Oxalis regnellii Mig. was investigated. Leaf stalks were cut and put into a nutrient solution, and the leaf movements automatically recorded. Continuous application of ABA (10-5 or 10-4 M ) to the solution did not alter the circadian period. However, the treatment delayed the rhythm and the amplitude was somewhat decreased. ABA pulses (4 h, 10-4 M ) caused permanent phase shifts of the rhythm with delays and advances. Transient wilting of the stalks plus leaves did not produce permanent phase shifts of the rhythm. A wilting period of 4 h gave a (transient) 2 h advance as judged from the first maximum after the wilting treatment. This advance was independent of the time of application of the wilting. Wilting treatment for 8 h caused advances, the magnitude of which varied according to the timing of the wilting treatment. It is concluded that there was no connection between the (permanent) ABA effects and the (transient) wilting effects on the phase of the circadian rhythm. A direct action of ABA on the circadian oscillator is possible and the molecular mechanism might be via effects on ion permeability of the pulvini cells.  相似文献   

19.
We have developed protocols for phase shifting the circadian rhythm of Chlamydomonas reinhardtii by light pulses. This paper describes the photobiology of phase-resetting the Chlamydomonas clock by brief (3 seconds to 15 minutes) light pulses administered during a 24 hour dark period. Its action spectrum exhibited two prominent peaks, at 520 and 660 nanometers. The fluence at 520 nanometers required to elicit a 4 hour phase shift was 0.2 millimole photon per square meter, but the pigment that is participating in resetting the clock under these conditions is unknown. The fluence needed at 660 nanomoles to induce a 4 hour phase shift was 0.1 millimole photon per square meter, which is comparable with that needed to induce the typical low fluence rate response of phytochrome in higher plants. However, the phase shift by red light (660 nanometers) was not diminished by subsequent administration of far-red light (730 nanometers), even if the red light pulse was as short as 0.1 second. This constitutes the first report of a regulatory action by red light in Chlamydomonas.  相似文献   

20.
Unilateral blue light irradiation induces bending of pulvini of Phaseolus vulgaris towards the source of light. The pulvinar bending is caused by a decrease in turgor pressure of motor cells that are irradiated with blue light. Decrease in the turgor pressure is caused by the net efflux of K(+) and counter anions, accompanying membrane depolarization. In the present study the effect of blue light on the activity of plasma membrane H(+)-ATPase was studied in relation to the membrane depolarization. The activity of the plasma membrane H(+)-ATPase was measured using protoplast suspensions prepared from laminar pulvini from primary leaves. A pulse of blue light under continuous red light irradiation induced both a transient increase in the external pH and transient inhibition of the vanadate-sensitive ATPase. Continuous blue light irradiation under continuous red light irradiation induced both a sustained increase in the external pH and sustained inhibition of the vanadate-sensitive ATPase. These results show that blue light inhibits the activity of the plasma membrane H(+)-ATPase. Inactivation of the plasma membrane H(+)-ATPase supports the membrane depolarization induced by the blue light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号