首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31), used as a coupling enzyme in the assay of the pyruvate, orthophosphate dikinase (EC 2.7.9.1) forward reaction, is a serious limiting factor for the overall rate when added at a level of 0.2–0.3 unit/ml of assay medium. Nonlimiting assay conditions are obtained by either increasing the level of the coupling enzyme to 3 units/ml or adding 6mM glucose-6-phosphate as an activator/stabilizer of phosphoenolpyruvate carboxylase.Abbreviations G-6-P glucose-6-phosphate - LDH lactate dehydrogenase - MDH malate dehydrogenase - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PVP polyvinylpyrrolidone - PPDK pyruvate, orthophosphate dikinase - U unit of enzyme activity (mol/min)  相似文献   

2.
In vitro activation of dark-inactivated pyruvate, orthophosphate dikinase extracted from maize (Zea mays L. cv. Golden Cross Bantam T51) leaves was examined. The inactive form of the enzyme and orthophosphate behaved kinetically as substrates for the reaction, which was catalyzed by an activating factor. This factor was bound by Blue Dextran Sepharose 4B and could be eluted by KCl at a concentration of 0.5m. The molecular weight of the maize leaf activating factor was about 88,000. Cibacron Blue 3G-A, a reactive moiety of Blue Dextran, inhibited the factor competitively with respect to the concentration of the inactive dikinase with a K(i) of 4.6 micromolar. Adenosine diphosphate and pyrophosphate were also found to be competitive inhibitors of activation, with respect to the inactive dikinase, giving K(i) values of 90 and 140 micromolar, respectively. Adenosine, other nucleotide diphosphates, and dinucleotides gave little or no inhibition of activation. These results suggest the association of a nucleotide, presumably nucleotide diphosphate, with the inactive form of pyruvate, orthophosphate dikinase.  相似文献   

3.
Properties and reaction mechanism of C4 leaf pyruvate,Pi dikinase   总被引:3,自引:0,他引:3  
The properties and reaction mechanism of maize leaf pyruvate,Pi dikinase are described. Km values were determined for the forward reaction substrates, pyruvate, ATP, and Pi, at pH 7.4 and 8.0 and for reverse reaction substrates at pH 7.4. Enzyme activity was almost totally dependent on added monovalent cations in both directions. NH+4 was most effective, with Ka values of about 0.38 mM for the forward reaction and 2 mM for the reverse reaction. K+ also completely activated the enzyme in the forward direction (Ka = 8 mM) but only partially activated in the reverse direction. Na+ had little effect on either reaction. The pH optimum for the forward reaction was about 8.2; the reverse reaction optimum was about 6.9. Maximum activity for the reverse direction was about twice the maximum forward direction rate. From data on the requirements for the ATP-AMP exchange reaction, on the mechanism of inhibition of the forward reaction by PEP, AMP, and PPi, and from the kinetics of the interaction of varying certain substrate pairs, it was concluded that the maize leaf pyruvate,Pi dikinase reaction proceeded by the two-step Bi Bi Uni Uni mechanism. This differs from the mechanism of catalysis by the bacterial enzyme.  相似文献   

4.
We have isolated two overlapping cDNA clones that encompass the entire structural gene for pyruvate, orthophosphate dikinase from maize. The analysis of the nucleotide sequence has revealed that the cDNA clones include an insert of a total of 3,171 nucleotides without a poly(A) tail and encode a polypeptide that contains 947 amino acid residues and has a molecular weight of 102,673. Comparison of the N-terminal amino acid sequence of purified pyruvate, orthophosphate dikinase protein with that deduced from the nucleotide sequence shows that the mature form of pyruvate, orthophosphate dikinase in the maize chloroplast consists of 876 amino acid residues and has a molecular weight of 95,353. The amino acid composition of the deduced sequence of pyruvate, orthophosphate dikinase is in good agreement with that of the purified enzyme. The region that contains the active and regulatory sites of pyruvate, orthophosphate dikinase can be found in the deduced sequence of amino acids. We have predicted the secondary structure and calculated the hydropathy pattern of this region. The extra 71 residues at the N terminus of the deduced sequence of amino acid residues corresponds to the transit peptide which is indispensable for the transport of the precursor protein into chloroplasts. We have compared the primary structure of the pyruvate, orthophosphate dikinase transit peptide to those of other proteins and found sequences similar to the consensus sequences found in other transit peptides.  相似文献   

5.
Mesophyll protoplasts and bundle sheath strands were isolated from maize leaves. Light microscopic observation showed the preparations were pure and without cross contamination. Protein blot analysis of mesophyll and bundle sheath cell soluble protein showed that the concentration of pyruvate orthophosphate dikinase (EC 2.7.9.1) is about one-tenth as much in the bundle sheath cells as in mesophyll cells, but about eight times greater than that found in wheat leaves, on the basis of soluble protein. Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was barely detectable in the bundle sheath cells, while ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and NADP-dependent malic enzyme (EC 1.3.1.37) were exclusively present in the bundle sheath cells and were absent in the mesophyll cells. Whereas pyruvate, Pi dikinase was previously considered localized only in mesophyll cells of C4 plants, these results clearly demonstrate the presence of appreciable quantities of the enzyme in the bundle sheath cells of the C4 species maize.  相似文献   

6.
When intact maize (Zea mays) mesophyll chloroplasts were illuminated in the presence of [32P]orthophosphate and subsequently subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, a major polypeptide species of Mr 100000 was found to be heavily labelled. This polypeptide was not found in maize mesophyll thylakoid or cytoplasmic fractions, but was localized solely in the chloroplast stroma. No phosphorylation of polypeptides in the 100000-Mr region was observed in the mesophyll chloroplasts from C3 species (where the primary product of CO2 fixation is a 3-carbon compound), suggesting that this polypeptide arises from a protein associated with C4 metabolism (where the first product of CO2 fixation is a 4-carbon compound). The 100kDa polypeptide was major component of the maize mesophyll chloroplast, comprising 10-15% of the total protein, which banded in an identical position to the apoprotein of the enzyme pyruvate, orthophosphate dikinase, which catalyses a reaction of the C4 cycle [Edwards & Walker (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis, Blackwell Scientific Publications, Oxford and London]. Phosphorylation in the 100kDa species was prohibited by treatment of lysed chloroplasts with antibody to pyruvate, orthophosphate dikinase (EC 2.7.9.1). These data suggest that the phosphorylated polypeptide observed after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis is the monomeric form of this enzyme. The 100kDa polypeptide was partially phosphorylated in darkness, but a significant increase in the degree of phosphorylation was found on illumination. This polypeptide was found to be dephosphorylated only slowly when the chloroplasts were returned to darkness. Maximum phosphorylation was observed in the presence of pyruvate or dihydroxyacetone phosphate, which also caused maximum activation of pyruvate, orthophosphate dikinase. Phosphorylation of the 100kDa polypeptide did not coincide with deactivation of pyruvate, orthophosphate dikinase, but maximum phosphorylation occurred under conditions that promoted maximum activity of the enzyme, at which time one phosphate group was associated with each enzyme molecule. Protein phosphorylation did not appear to arise from the reaction mechanism of the enzyme.  相似文献   

7.
Pyruvate orthophosphate dikinase was detected from Kalanchoë daigremontiana Hamet. et. Perr., a succulent plant with crassulacean acid metabolism. Enzyme activity was similar to that of maize extracts. Two enzymes demonstrating pyruvate orthophosphate dikinase activity from K. daigremontiana and Zea mays were found to be partially identical from enzyme-inhibition and immunoprecipitin tests with maize enzyme antiserum. A time course study demonstrated that pyruvate orthophosphate dikinase activity in leaf extracts was dependent upon exposure of leaves to light.  相似文献   

8.
The amount of pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) protein in wheat (Triticum aestivum L. var Cheyenne) grains was determined at different stages of development by the protein blot method. The variation in PPDK protein with time in developing wheat grains was similar to that of the enzyme's activity reported by Meyer et al. (1982 Plant Physiol 69: 7-10). The variation in levels of PPDK mRNA with seed development was determined by analysis of polypeptides immunoprecipitated by anti-PPDK serum from in vitro translation products of extracted seed RNA. This mRNA variation was similar to that of the in vivo enzyme levels and the correlation is consistent with the regulation of PPDK gene expression by the level of its mRNA.

The highest level of PPDK in developing wheat seeds occurs later than the highest levels of both ribulose bisphosphate carboxylase (EC 4.1.1.39) and of chlorophyll, which are located in the green pericarp tissue. PPDK was located in both endosperm and pericarp tissue of the seeds. The tissue location and developmental profile of seed PPDK are consistent with a metabolic role of providing phosphoenolpyruvate as a substrate for recapturing respiratory CO2 in the seed, and possibly for amino acid interconversions during development.

  相似文献   

9.
Pyruvate,Pi dikinase regulatory protein (PDRP) has been highly purified from maize leaves, and its role in catalyzing both ADP-mediated inactivation (due to phosphorylation of a threonine residue) and Pi-mediated activation (due to dephosphorylation by phosphorolysis) of pyruvate,Pi dikinase has been confirmed. These reactions account for the dark/light-mediated regulation of pyruvate,Pi dikinase observed in the leaves of C4 plants. During purification to apparent homogeneity the ratio of these two activities remained constant. The molecular weight of the native PDRP was about 180,000 at pH 8.3 and 90,000 at pH 7.5. Its monomeric molecular weight was 45,000. It was confirmed that inactive pyruvate,Pi dikinase free of a phosphate group on a catalytic histidine was the preferred substrate for activation. Michaelis constants for orthophosphate and the above form of active pyruvate,Pi dikinase were determined, as well as the mechanism of inhibition of the PDRP-catalyzed reaction by ATP, ADP, AMP, and PPi. For the inactivation reaction, Km values were 1.2 microM for the active pyruvate,Pi dikinase and 52 microM for ADP. CDP and GDP but not UDP could substitute for ADP. The inactivation reaction is inhibited by inactive pyruvate,Pi dikinase competitively with respect to both active pyruvate,Pi dikinase and ADP. Both the activation and inactivation reactions catalyzed by PDRP have a broad pH optimum between 7.8 and 8.3. The results are discussed in terms of the likely mechanism of dark/light regulation of pyruvate,Pi dikinase in vivo.  相似文献   

10.
We confirmed an earlier report (B. B. Buchanan, J. Bacteriol. 119:1066-1068, 1974) that the nonsulfur purple photosynthetic bacterium Rhodospirillum rubrum contains pyruvate, orthophosphate dikinase (EC 2.7.9.1) activity that is absolutely dependent upon all three substrates by performing enzyme assays in both the forward (phosphoenolpyruvate formation) and reverse (ATP formation) directions. Of the various carbon sources tested, photoheterotrophic growth on DL-lactate plus bicarbonate proved to be best for the production of dikinase activity units. A four-step protocol, which included batch DEAE-cellulose processing, ammonium sulfate fractionation, and chromatography on hydroxylapatite and Blue A Dyematrex gels, was devised for partially purifying the enzyme from such cells. The protein was purified about 80-fold to an apparent electrophoretic purity of about 60% and a final specific activity of 3.6 U/mg of protein, with about a 35% overall recovery of activity units. Estimations of native and monomeric relative molecular weights by sucrose density gradient centrifugation, high-pressure liquid chromatography-based size exclusion chromatography, denaturing electrophoresis, and immunoblotting suggested that the holoenzyme was most likely a homodimer of 92.7-kilodalton subunits. The results are compared with related previous data on the nonphotosynthetic bacterial dikinase and the C4 mesophyll chloroplast enzyme.  相似文献   

11.
Cold lability of pyruvate, orthophosphate dikinase in the maize leaf   总被引:10,自引:5,他引:5       下载免费PDF全文
Cold lability of pyruvate, orthophosphate dikinase was investigated using a homogeneous, purified enzyme preparation from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. Its stability was markedly reduced below about 10 C and the rate of cold inactivation followed first order kinetics at a concentration lower than about 0.1 milligram of enzyme per milliliter. Cold inactivation was little affected by pH in the range which gives good stability for the enzyme at warm temperatures and the enzyme activity was protected strongly by inclusion of substrates (pyruvate and phosphoenolpyruvate) and polyols such as sucrose, sorbitol, and glycerol. Loss of catalytic activity was accompanied by an apparent dissociation of a tetrameric form of the enzyme (9S form) into a new, more slowly sedimenting (5.1S) component. Inclusion of pyruvate at 4 mM in the cold-treated enzyme had no effect on the sedimentation value. A sharp change in activation energy of the dikinase-catalyzed reaction was observed near 12 C and its break point appears to be close to the generally accepted critical low temperature limit for the growth of maize plants.  相似文献   

12.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

13.
14.
The enzyme responsible for the direct phosphorylation of pyruvate during gluconeogenesis in Acetobacter xylinum has been purified 46-fold from ultrasonic extracts and freed from interfering enzyme activities. The enzyme was shown to catalyze the reversible Mg(2+) ion-dependent conversion of equimolar amounts of pyruvate, adenosine triphosphate (ATP), and orthophosphate (P(i)) into phosphoenolpyruvate (PEP), adenosine monophosphate (AMP), and pyrophosphate (PP). The optimal pH for PEP synthesis was pH 8.2; for the reversal it was pH 6.5. The ratio between the initial rates of the reaction in the forward and reverse directions was 5.1 at pH 8.2 and 0.45 at pH 6.5. The apparent K(m) values of the components of the system in the forward reaction were: pyruvate, 0.2 mm; ATP, 0.4 mm; P(i), 0.8 mm; Mg(2+), 2.2 mm; and for the reverse reaction: PEP, 0.1 mm; AMP, 1.6 mum; PP, 0.067 mm; Mg(2+), 0.87 mm. PEP formation was inhibited by AMP and PP. The inhibition by AMP was competitive with regard to ATP (K(i) = 0.2 mm). The reverse reaction was inhibited competitively by ATP and noncompetitively by pyruvate. The enzyme was strongly inhibited by p-hydroxymercuribenzoate. The inhibition was reversed by dithiothreitol and glutathione. The properties of the enzyme are discussed in relation to the regulation of the opposing enzymatic activities involved in the interconversion of PEP and pyruvate in A. xylinum.  相似文献   

15.
The gene for C4-pyruvate,orthophosphate dikinase (PPDK) from maize (Zea mays) was cloned into an Escherichia coli expression vector and recombinant PPDK produced in E. coli cells. Recombinant enzyme was found to be expressed in high amounts (5.3 U purified enzyme-activity liter-1 of induced cells) as a predominantly soluble and active protein. Biochemical analysis of partially purified recombinant PPDK showed this enzyme to be equivalent to enzyme extracted from illuminated maize leaves with respect to (i) molecular mass, (ii) specific activity, (iii) substrate requirements, and (iv) phosphorylation/inactivation by its bifunctional regulatory protein.Abbreviations DTT- dithiothreitol - FPLC- fast-protein liquid chromatography - HAP- hydroxyapatite - IPTG- isopropyl--thiogalactoside - MOPS- 3-(N-morpholino)propanesulfonic acid - PCR- polymerase chain reaction - PEP- phosphoenolpyruvate - PMSF- phenylmethylsufonyl fluoride - PPDK- pyruvate,orthophosphate dikinase - RP- regulatory protein  相似文献   

16.
Pyruvate orthophosphate dikinase in wheat leaves   总被引:9,自引:3,他引:6       下载免费PDF全文
Pyruvate orthophosphate dikinase (PPDK) was found in wheat (Triticum aestivum L. cv Cheyenne [CI 8885]) leaves both by activity assays and by the protein blot method. The specific activity of the wheat enzyme is comparable to that of PPDK from maize leaves. Of the total soluble protein in wheat leaves, about 0.05% was PPDK, comparable to the amount in the immature wheat seed and about 1/70th the amount found in mesophyll cells of maize. Immunoprecipitation of wheat PPDK with maize enzyme antiserum indicates partial identity, and the apparent subunit molecular weight is the same based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

17.
Pyruvate, orthophosphate dikinase (EC 2.7.9.1 [EC] ) was activatedin the light and inactivated following a dark treatment in intactmaize mesophyll chloroplasts. Addition of catalase (100–250units/ml) to the assay medium was necessary to obtain good activationand to keep the enzyme in an active state during illumination.Arsenate and carbonyl cyanide m-chlorophenyl-hydrazone, uncouplersof photophosphorylation, inhibited the activation. Pyruvate,which has been proposed to have a critical role in supportingthe light activation of pyruvate, orthophosphate dikinase, actuallyinhibited the activation. The pyruvate level in the chloroplastsuspension decreased when the enzyme was light-activated. Measurementsof adenylates and pyruvate in the chloroplasts indicated thatthe energy state of the chloroplasts was more important forthe light activation than was the level of pyruvate. 1Present address: Department of Biochemistry, Faculty of Science,Saitama University, 255, Shimo-Okubo, Urawa, 338 Japan 2Present address: National Institute of Agrobiological Resources,Yatabe, Tsukuba, Ibaraki, 305 Japan (Received May 2, 1989; Accepted October 2, 1989)  相似文献   

18.
Phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) cold inactivation was studied in leaf extracts from Atriplex halimus L. Both enzyme activities gradually reduced as the temperature and the total soluble protein decreased. Mg2+ at a concentration of 10 mM stabilized PEPC and PPDK activities against cold inactivation. At low Mg2+ concentration (4 mM), PEPC was strongly protected by phosphoenolpyruvate, glucose-6-phosphate, and, partially, byL-malate, while PPDK was protected by PEP, but not by its substrate, pyruvate. High concentrations of compatible solutes (glycerol, betaine, proline, sorbitol and trehalose) proved to be good protectants for both enzyme activities against cold inactivation. When illuminated leaves were exposed to low temperature, PPDK was partially inactivated, while the activity of PEPC was not altered.  相似文献   

19.
Pyruvate orthophosphate dikinase is synthesized in non-green leaf cells of the maize mutant iojap. Since iojap plastids lack ribosomes, it is concluded that the site of synthesis of pyruvate orthophosphate dikinase in maize leaf cells is on ribosomes in the cytoplasm.  相似文献   

20.
Specific activities of NADP-malic enzyme, NAD-malic enzyme, phosphoenolpyruvate carboxykinase and pyruvate, orthophosphate dikinase in various cells of Vicia faba L. leaflets were determined. Expressed on dry weight, chlorophyll or protein basis, the averages for NADP- and NAD-malic enzyme specific activities were higher in guard cells than in photosynthetic parenchyma cells. Malic enzyme-specific activities were also high in epidermal cells. Phosphoenolypyruvate carboxykinase activity was not detected in Vicia leaf extracts or guard cells; the assay techniques were validated by mixed Vicia-Brachiaria leaf extraction and assays on nanogram samples of Brachiaria bundlesheath cells. It was inferred from these data that guard cell malate depletion is by decarboxylation to pyruvate in the epidermal layer, but how the various epidermal cells interact remains obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号