首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To determine the selectivity of movement of amino acids from source leaves to sink tissues in soybeans (Glycine max [L.] Merr. `Wells'), 14C-labeled serine, leucine, or lysine was applied to an abraded spot on a fully expanded trifoliolate leaflet, and an immature sink leaf three nodes above was monitored with a GM tube for arrival of radioactivity. Comparisons were made with 14C-sucrose and 14CO2 assimilates. Radioactivity was detected in the sink leaf for all compounds applied to the source leaflet. A heat girdle at the source leaf petiole essentially blocked movement of applied compounds, suggesting phloem transport. Transport velocities were similar (ranged from 0.75 to 1.06 cm/min), but mass transfer rates for sucrose were much higher than those for amino acids. Hence, the quantity of amino acids entering the phloem was much smaller than that of sucrose. Extraction of source, path, and sink tissues at the conclusion of the experiments revealed that 80 to 90% of the radioactivity remained in the source leaflet. Serine was partially metabolized in the transport path, whereas lysine and leucine were not. Although serine is found in greater quantities than leucine and lysine in the source leaf and path of soybeans, applied leucine and lysine were transported at comparable velocities and in only slightly lower quantities than was applied serine. Thus, no selective barrier against entry of these amino acids into the phloem exists.  相似文献   

2.
Phloem loading and unloading of sugars and amino acids   总被引:24,自引:2,他引:22  
In terrestrial higher plants, phloem transport delivers most nutrients required for growth and storage processes. Some 90% of plant biomass, transported as sugars and amino nitrogen (N) compounds in a bulk flow of solution, is propelled though the phloem by osmotically generated hydrostatic pressure differences between source (net nutrient export) and sink (net nutrient import) ends of phloem paths. Source loading and sink unloading of sugars, amino N compounds and potassium largely account for phloem sap osmotic concentrations and hence pressure differences. A symplasmic component is characteristic of most loading and unloading pathways which, in some circumstances, may be interrupted by an apoplasmic step. Raffinose series sugars appear to be loaded symplasmically. However, sucrose, and probably certain amino acids, are loaded into minor veins from source leaf apoplasms by proton symporters localized to plasma membranes of their sieve element/companion cell (se/cc) complexes. Sucrose transporters, with complementary kinetic properties, are conceived to function as membrane transporter complexes that respond to alterations in source/sink balance. In contrast, symplasmic unloading is common for many sink types. Intervention of an apoplasmic step, distal from importing phloem, is reserved for special situations. Effluxers that release sucrose and amino acids to the surrounding apoplasm in phloem loading and unloading are yet to be cloned. The physiological behaviour of effluxers is consistent with facilitated membrane transport that can be energy coupled. Roles of sucrose and amino acid transporters in phloem unloading remain to be discovered along with mechanisms regulating symplasmic transport. The latter is hypothesized to exert significant control over phloem unloading and, in some circumstances, phloem loading.  相似文献   

3.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

4.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   

5.
The transport of assimilates from source to sink tissues is mediated by the phloem. Along the vascular system the phloem changes its physiological function from loading phloem to transport and unloading phloem. Sucrose carrier proteins have been identified in the transport phloem, but it is unclear whether the physiological role of these transporters is phloem unloading of sucrose or retrieval of apoplasmic sucrose back into the sieve element/companion cell complex. Here, we describe the dynamic expression of the Ricinus communis sucrose carrier RcSCR1 in the hypocotyl at different sink strengths. Our results indicate that phloem unloading in castor bean is not catalysed by the phloem loader RcSCR1. However, this sucrose carrier represents the molecular basis of the sucrose retrieval mechanism along the transport phloem, which is dynamically adjusted to the sink strength. As a consequence, we assume that other release carrier(s) exist in sink tissues, such as the hypocotyl, in R. communis.  相似文献   

6.
Sucrose (2,5–1000 mmol l–1), labeled with [14C]sucrose, was taken up by the xylem when supplied to one end of a 30-cm-long leaf strip of Zea mays L. cv. Prior. The sugar was loaded into the phloem and transported to the opposite end, which was immersed in diluted Hoagland's nutrient solution. When the Hoagland's solution at the opposite end was replaced by unlabeled sucrose solution of the same molarity as the labeled one, the two solutions met near the middle of the leaf strip, as indicated by radioautographs. In the dark, translocation of 14C-labeled assimilates was always directed away from the site of sucrose application, its distance depending on sugar concentration and translocation time. When sucrose was applied to both ends of the leaf strip, translocation of 14C-labeled assimilates was directed toward the lower sugar concentration. In the light, transport of 14-C-labeled assimilates can be directed (1) toward the morphological base of the leaf strip only (light effect), (2) toward the base and away from the site of sucrose application (light and sucrose effect), or (3) away from the site of sucrose application independent of the (basipetal or acropetal) direction (sucrose effect). The strength of a sink, represented by the darkened half of a leaf strip, can be reduced by applying sucrose (at least 25 mmol l–1) to the darkened end of the leaf strip. However, equimolar sucrose solutions applied to both ends do not affect the strength of the dark sink. Only above 75 mmol l–1 sucrose was the sink effect of the darnened part of the leaf strip reduced. Presumably, increasing the sucrose concentration replenishes the leaf tissue more rapidly, and photosynthates from the illuminated part of the leaf strip are imported to a lesser extent by the dark sink.Supported by Deutsche Forschungsgemeinschaft  相似文献   

7.
Accumulation of assimilates in source leaves of magnesium‐deficient plants is a well‐known feature. We had wished to determine whether metabolite concentrations in sink leaves and roots are affected by magnesium nutrition. Eight‐week‐old spinach plants were supplied either with a complete nutrient solution (control plants) or with one lacking Mg (deficient plants) for 12 days. Shoot and root fresh weights and dry weights were lower in deficient than in control plants. Mg concentrations in deficient plants were 11% of controls in source leaves, 12% in sink leaves and 26% in roots, respectively. As compared with controls, increases were found in starch and amino acids in source leaves and in sucrose, hexoses, starch and amino acids in sink leaves, whereas they were only slightly enhanced in roots. In phloem sap of magnesium‐deficient and control plants no differences in sucrose and amino acid concentrations were found. To prove that sink leaves were the importing organs they were shaded, which did not alter the response to magnesium deficiency as compared with that without shading. Since in the shaded sink leaves the photosynthetic production of metabolites could be excluded, those carbohydrates and amino acids that accumulated in the sink leaves of the deficient plants must have been imported from the source leaves. It is concluded that in magnesium‐deficient spinach plants the growth of sink leaves and roots was not limited by carbohydrate or amino acid supply. It is proposed that the accumulation of assimilates in the source leaves of Mg‐deficient plants results from a lack of utilization of assimilates in the sink leaves.  相似文献   

8.
Transport processes across the plasma membrane of leaf vascular tissue are essential for transport and distribution of assimilates. In potato, leaves are the predominant sites for nitrate reduction and amino acid biosynthesis. From there, assimilated amino acids are exported through the phloem to supply tubers with organic nitrogen. To study the role of amino acid transporters in long-distance transport and allocation of organic nitrogen in potato plants, a gene encoding a functional, leaf-expressed amino acid permease StAAP1 was isolated. Similar to the sucrose transporter SUT1, StAAP1 expression was induced during the sink-to-source transition, indicating a role in phloem loading. To test the role of StAAP1, expression was inhibited by an antisense approach. Transgenic plants with reduced StAAP1 expression were phenotypically indistinguishable from wild type, as were photosynthetic capacity and tuber yield. However, tubers from antisense StAAP1 plants showed up to 50% reduction in free amino acid contents. In comparison, starch content was not affected or tended to increase relative to wild type. The reduction in all amino acids except aspartate in the antisense plants is consistent with the properties of amino acid permeases (AAPs) found in heterologous systems. The results demonstrate an important role for StAAP1 in long-distance transport of amino acids and highlight the importance of plasma membrane transport for nutrient distribution in plants.  相似文献   

9.
Physiological and transport data are presented in support of a symplastic pathway of phloem unloading in importing leaves of Beta vulgaris L. (`Klein E multigerm'). The sulfhydryl reagent p-chloromercuribenzene sulfonic acid (PCMBS) at concentration of 10 millimolar inhibited uptake of exogenous [14C]sucrose by sink leaf tissue over sucrose concentrations of 0.1 to 5.0 millimolar. Inhibited uptake was 24% of controls. The same PCMBS treatment did not affect import of 14C-label into sink leaves during steady state labeling of a source leaf with 14CO2. Lack of inhibition of import implies that sucrose did not pass through the free space during unloading. A passively transported xenobiotic sugar, l-[14C]glucose, imported by a sink leaf through the phloem, was evenly distributed throughout the leaf as seen by whole-leaf autoradiography. In contrast, l-[14C]glucose supplied to the apoplast through the cut petiole or into a vein of a sink leaf collected mainly in the vicinity of the major veins with little entering the mesophyll. These patterns are best explained by transport through the symplast from phloem to mesophyll.  相似文献   

10.
We tested the possible cytokinin effect on the functioning of the active transport system involved in the assimilate loading into the phloem as a cause for the cytokinin sink and retention effect. This effect is manifested in the deceleration of substance export from and the stimulation of substance import to the sites of local phytohormone application to the mature detached leaf from untreated leaf areas. To affect the membrane mechanisms of the substance transport, we used leaf treatment with the phytotoxin fusicoccin, an enhancer of plasmalemmal H+-ATPase and a potential stimulator of assimilates export, and with the phytohormone ABA affecting transport, metabolism, and plant growth. However, fusicoccin did not enhance 14C-sucrose export from the leaf blade and did not interfere with the cytokinin-induced export deceleration. ABA reduced substantially 14C export from the leaf but eliminated the cytokinin effect on this process. Similar results were obtained for broad bean (Vicia faba L.) leaves with apoplastic phloem loading, involving H+-ATPase activity, and pumpkin (Cucurbita pepo L.) leaves with symplastic phloem loading, that is, occurring without sucrose transmembrane translocation and without H+-ATPase involvement. The conclusion is that the cytokinin-induced development of sink zones in source leaves is not related to the membrane mechanisms of the substance transport in the mesophyll–phloem system. The data obtained support the idea that the cause for the cytokinin sink and retention effect is the enhancement of elongation growth and total activation of metabolism in the mesophyll cells of the detached leaf.  相似文献   

11.
Changes in the chloroplast ultrastructure and starch and lipid content in the mesophyll and phloem companion cells of the phloem were studied after induction of source and sink functions in leaf tissues. A detached sugar-beet leaf, one half of which was treated with water (source part) and the other half of which was treated with 10–4 M benzyladenine (BA) (acceptor part), was used as a model. After 65-h exposure to diffuse light, starch disappeared and lipid content increased in the source part of the leaf, with simultaneous disorganization of the chloroplast structure, which was most pronounced in the companion cells. Changeover from the source to sink function, induced by BA treatment, did not lead to marked destructive changes in the chloroplast structure of companion cells and resulted in the appearance of starch and in further increase in the level of lipids. Smaller amounts of starch also appeared in the mesophyll chloroplasts in the sink part of the leaf. We suppose that: (1) BA promotes the storage of assimilates, which are imported from the source part of the leaf to the companion cells, in the form of starch and lipids within chloroplasts; and this storage contributes to the maintenance of the sucrose concentration gradient in the conducting system between donor and sink parts of the leaf and, thus, activates metabolite inflow and (2) a barrier exists in the sink part of the leaf for assimilates destined to mesophyll cells, which restricts their export from the phloem.  相似文献   

12.
Aloni B  Daie J  Wyse RE 《Plant physiology》1986,82(4):962-966
The effect of gibberellic acid (GA3) on sucrose export from source leaves was studied in broad bean (Vicia faba L.) plants trimmed of all but one source and one sink leaf. GA3 (10 micromolar) applied to the source leaf, enhanced export of [14C]sucrose (generated by 14CO2 fixation) to the root and to the sink leaf. Enhanced export was observed with GA treatments as short as 35 minutes. When GA3 was applied 24 hours prior to the 14CO2 pulse, the enhancement of sucrose transport toward the root was abolished but transport toward the upper sink leaf was unchanged. The enhanced sucrose export was not due to increased photosynthetic rate or to changes in the starch/sucrose ratio within the source leaf; rather, GA3 increased the proportion of sucrose exported. After a 10-min exposure to [14C]GA3, radioactivity was found only in the source leaf. Following a 2 hour exposure to [14C]GA3, radioactivity was distributed along the entire stem and was present in both the roots and sink leaf. Extraction and partitioning of GA metabolites by thin layer chromatography indicated that there was a decline in [14C]GA3 in the lower stem and root, but not in the upper stem. This pattern of metabolism is consistent with the disappearance of the GA3 effect in the lower stem with time after treatment. We conclude that in the short term, GA3 enhances assimilate export from source leaves by increasing phloem loading. In the long term (24 hours), the effect of GA3 is outside the source leaf. GA3 accumulates in the apical region resulting in enhanced growth and thus greater sink strength. Conversely, GA3 is rapidly metabolized in the lower stem thus attenuating any GA effect.  相似文献   

13.
Enhancement of Phloem exudation from cut petioles by chelating agents   总被引:2,自引:0,他引:2  
The photosynthetic assimilates in leaves of Perilla crispa attached to the plant were labeled by treating the leaves with (14)CO(2). When subsequently detached, these leaves exuded a negligible amount of radioactivity from the cut petiole into water. Ethylenediaminetetraacetate (EDTA), citric acid, and ethyleneglycol-bis (beta-aminoethyl ether) N,N'-tetraacetate greatly increased exudation of labeled assimilates into a solution bathing the petioles. The optimal concentration of EDTA was 20 mm, and maximal exudation took place between 2 and 4 hours after excision. Up to 22% of the radioactivity fixed in the leaf was exuded into an EDTA solution as compared to an export of 38% from attached leaves. The amount of radioactivity in the exudate was much reduced at low temperature. Presence of EDTA was required in the collecting solution for only 1 to 2 hours; upon transfer to water, exudation continued as in continuous presence of EDTA. Ca(2+) completely inhibited the effect of EDTA.Anatomical studies indicated that callose formation on the sieve plates near the cut surface of the petioles was less in leaves on EDTA than on water.More than 95% of the radioactivity exuded by detached leaves was present in the sugars verbascose, stachyose, raffinose, and sucrose, which are translocated in the phloem of Perilla. Labeled glucose, fructose, and galactinol were detected in the leaf blade and petiole, but not in exudates.The addition of EDTA to a solution bathing the petiole of detached leaves of Chenopodium rubrum and Pharbitis nil also increased the exudation of labeled assimilates. In these two species, label appeared only in a compound that cochromatographed with sucrose.It is concluded that the radioactive products in the solution are actually exuded by the phloem. Possibly EDTA chelates Ca(2+) that otherwise participates in the reactions that seal cut phloem.  相似文献   

14.
Metabolite transport processes and primary metabolism are highly interconnected. This study examined the importance of source-to-sink nitrogen partitioning, and associated nitrogen metabolism for carbon capture, transport and usage. Specifically, Arabidopsis aap8(AMINO ACID PERMEASE 8) mutant lines were analyzed to resolve the consequences of reduced amino acid phloem loading for source leaf carbon metabolism,sucrose phloem transport and sink development during vegetative and reproductive growth phase. Results showed that decreased amino acid transport had a negative effect on sink development of aap8 lines throughout the life cycle, leading to an overall decrease in plant biomass. During vegetative stage, photosynthesis and carbohydrate levels were decreased in aap8 leaves, while expression of carbon metabolism and transport genes, as well as sucrose phloem transport were not affected despite reduced sink strength.However, when aap8 plants transitioned to reproductive phase, carbon fixation and assimilation as well as sucrose partitioning to siliques were strongly decreased. Overall,this work demonstrates that phloem loading of nitrogen has varying implications for carbon fixation, assimilation and source-to-sink allocation depending on plant growth stage. It further suggests alterations in source-sink relationships, and regulation of carbon metabolism and transport by sink strength in a development-dependent manner.  相似文献   

15.
Zuther E  Kwart M  Willmitzer L  Heyer AG 《Planta》2004,218(5):759-766
Companion cell-specific expression of a cytosolic invertase from yeast (Saccharomyces cerevisiae) was used as a tool to synthesise oligosaccharides in the sieve element/companion cell complex and study whether oligosaccharides could be transported in the phloem of an apoplastically loading species. Potato (Solanum tuberosum L.) plants expressing the invertase under the control of the Agrobacterium tumefaciens rolC promoter produced the trisaccharide 6-kestose in leaves, which was transported via the phloem and accumulated in tubers of transgenic plants. In graft experiments with rolC invertase plants as scion and wild-type rootstocks, 6-kestose accumulated in tubers to levels comparable to sucrose. This shows that long-distance transport of oligosaccharides is possible in apoplastically loading plants, which normally transport only sucrose. The additional transport route for assimilates neither led to elevated photosynthetic activity nor to increased tuber yield. Enhanced sucrose turnover in companion cells caused large amounts of glucose and fructose to be exuded from leaf petioles, and elevated levels of sucrose were detected in phloem exudates. While the latter indicates a higher capacity for sucrose loading into the phloem due to increased metabolic activity of companion cells, the massive release of hexoses catalysed by the invertase seemed to interfere with assimilate delivery to sink organs.Abbreviations HPAEC High-performance liquid anion-exchange chromatography - SE–CCC Sieve element/companion cell complex - WT Wild type  相似文献   

16.
The influence of stage of development (preflowering versus flowering) in nodulated and nonnodulated soybeans (Glycine max [L.] Merr. cv. Wells) on partitioning of 14C into assimilates following exposure of a soybean leaf to 14CO2 by both steady-state and pulse-labeling techniques was studied. Blades on the second fully expanded leaf from the stem apex were exposed to 14CO2. Radioactive assimilates were extracted from source leaf blades, petioles, and stems (both the path up and path down from source leaf), were separated into neutral (sugars), basic (amino acids), and acidic (organic acids, sugar phosphates) fractions by ion exchange chromatography. The basic fraction was further resolved using thin layer chromatography and the percentage of radioactivity recovered in each amino acid was determined.  相似文献   

17.
A concept is suggested, which supposes that assimilates are transferred within the plant downward through phloem sieve tubes and, after entering the stem apoplast, are carried up with the ascending flow of transpiration water. After entering the apoplast of fully expanded leaves, these solutes are reexported through the phloem. Thus, a common pool of assimilates with uniform concentration is formed in the plant apoplast. According to this concept, the mechanism of assimilate demand represents a response of photosynthetic apparatus to changes in the apoplastic level of metabolites consumed by sink organs. The ratios of labeled photoassimilates differ between the apoplast and mesophyll cells. Most of the apoplastic labeled carbon is contained in sucrose, less in amino acids, and even less in hexoses. The 14C-labeling of amino acids increases and the sucrose/hexose labeling ratio decreased under conditions of enhanced nitrate supply. The well-known effect of relative inhibition of assimilate export from leaves under conditions of enhanced nitrogen supply is explained by an enhanced hydrolysis of apoplast-derived sucrose due to the increase in invertase activity, rather than by diversion of primary photosynthetic products from sucrose synthesis to other pathways required for activated growth processes in leaves. This notion is based on observations that the sucrose/hexose ratio is reduced to a greater extent in the apoplast than in the symplast. The last assumption was supported by data obtained after artificial changes in the apoplastic pH. In these experiments intact plants were placed in the atmosphere of NH3 or HCl vapors, which induced opposite changes in relative content of labeled assimilates in the apoplast and in the photosynthetic rate.  相似文献   

18.
Radioactive sucrose, l-leucine, l-glutamate, and gamma-aminobutyrate were applied exogenously to abraded areas of soybean leaves. The three amino acids were translocated with similar velocities and mass transfer rates on a molar basis, although they were metabolized differently in the sink tissue. The concentration dependence of leucine translocation showed a triphasic saturation response, while sucrose translocation showed a biphasic saturation response to increasing concentration. Apparent K(m) and V(max) for leucine and sucrose loading in the phloem differed. Both leucine and sucrose translocation were inhibited by uncouplers, high K(+), and p-chloromercuribenzenesulfonic acid. Treatment with 0.8 m sorbitol had little effect on sucrose translocation but stimulated leucine translocation, indicating an apoplastic route of loading for leucine. No effect on mass transfer rates was observed when sucrose and amino acids were applied exogenously together. These data provide evidence that phloem loading of amino acids and sucrose is mediated by different and separate carriers, both being dependent on an energy-requiring mechanism.  相似文献   

19.
通过向蚕豆叶片饲喂~(14)CO_2,应用液闪和显微放射性自显影技术表明标记同化物经叶脉和果荚韧皮部筛管快速运输至蚕豆种皮。种皮吸收营养、生长,后期逐步降解、供养子叶。种皮内的两类维管束系统同时输送营养并卸出到种皮内侧的质外体空间里。种皮里的反向维管束韧皮部卸出以共质体方式为主。并提供养分供种皮生长,而大部分的同化物由正向完整维管束韧皮部的筛分子一传递细胞进行质外体方式卸出。膨大中的子叶在早期即已成为生理上十分活跃的库。它对标记同化物的摄入随时间进程而急剧上升。  相似文献   

20.
6(5)carboxyfluorescein (6(5)CF), a polar fluorescein with an apparent pK of 6.3, was introduced, as a pH 6.3 solution, into the apoplast of lamina or petioles of mature soybean leaves. Freehand sections were prepared at various times and immediately observed with a fluorescence microscope. 6(5)CF-associated fluorescence appeared in all sink organs, from shoot apex to roots. It was strictly confined to the phloem regions, even after 4 days. Its transport into young leaves ceased at approximately the time they underwent sink-to-source transition. It was never transported between two leaflets of the same leaf. Its transport was interrupted by phloem destruction. All these transport characteristics were highly reproducible, and were paralleled by those of 14C transport after application of (14C)sucrose to leaf surfaces. In contrast with 6(5)CF, fluorescein was transported between mature leaves, and between leaflets of the same leaf. It was not restricted to phloem, and often appeared in the xylem region. These results indicate that 6(5)CF can be used to monitor phloem sap translocation in real time, in short- and long-term experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号