首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutants in the indole-3-acetic acid metabolism derived fromcultured crown gall cells were tested to see whether they couldutilize any one of eight indolic compounds in place of indole-3-aceticacid. Two auxin-heterotrophic mutant cell lines could not utilizeindolepyruvic acid, but growth recovered when there was a supplementof indole-3-acetic acid. Indoleacetonitril and indoleacetaldoximeinhibited the growth of mutant cell lines and their parentalcrown gall cells. Cultured crown gall cells may have synthesizedindole-3-acetic acid from tryptophan via indolepyruvic acidand indole-acetaldehyde, and also may be able to produce indole-3-aceticacid from tryptophan via tryptamine (Received May 6, 1980; )  相似文献   

2.
Mutants in the indole-3-acetic acid metabolism derived fromcultured crown gall cells were tested to see whether they couldutilize any one of eight indolic compounds in place of indole-3-aceticacid. Two auxin-heterotrophic mutant cell lines could not utilizeindolepyruvic acid, but growth recovered when there was a supplementof indole-3-acetic acid. Indoleacetonitril and indoleacetaldoximeinhibited the growth of mutant cell lines and their parentalcrown gall cells. Cultured crown gall cells may have synthesizedindole-3-acetic acid from tryptophan via indolepyruvic acidand indole-acetaldehyde, and also may be able to produce indole-3-aceticacid from tryptophan via tryptamine (Received May 6, 1980; )  相似文献   

3.
Tryptophol Formation by Zygosaccharomyces priorianus   总被引:2,自引:1,他引:1       下载免费PDF全文
Zygosaccharomyces priorianus converted L-tryptophan to tryptophol and to small quantities of indole-3-acetic acid. Neither tryptophol nor indole-3-acetic acid was metabolized when added separately to growing cultures. The possible intermediacy of indole-3-pyruvic acid, indole-3-acetaldehyde, and tryptamine in the degradation of L-tryptophan was tested by feeding these compounds to Z. priorianus and Saccharomyces cerevisiae. Indole-3-pyruvic acid and indole-3-acetaldehyde were converted to tryptophol and indole-3-acetic acid, with the latter accumulating only in small amounts. Tryptamine was converted to its N-acetyl derivative by these organisms. A qualitative study was made on the metabolism of L-phenylalanine, L-tyrosine, and L-5-hydroxytryptophan by these organisms. Like L-tryptophan, these amino acids were metabolized to their respective alcohol and acid derivatives. Of a large number of organisms tested, the yeasts possessed the highest capacity for degrading L-tryptophan to tryptophol.  相似文献   

4.
A full-length complementary DNA clone encoding tryptophan decarboxylase (TDC; EC 4.1.1.28) from Catharanthus roseus (De Luca V, Marineau C, Brisson N [1989] Proc Natl Acad Sci USA 86: 2582-2586) driven by the CaMV 35S promoter was introduced into tobacco (Nicotiana tabacum) to direct the synthesis of the protoalkaloid tryptamine from endogenous tryptophan. Young, fully expanded leaves of CaMV 35S-TDC transformed plants had from four to 45 times greater TDC activity than did controls. Tryptamine accumulated in transgenic plants to levels that were directly proportional to their TDC specific activity. Despite their increased tryptamine content, the growth and development of the CaMV 35S-TDC plants appeared normal with no significant differences in indole-3-acetic acid levels between high tryptamine and control plants. Plants with the highest TDC activity contained more than 1 milligram of tryptamine per gram fresh weight, a 260-fold increase over controls.  相似文献   

5.
A study has been made of the effects of solvent, temperature, and the antioxidant, sodium diethyldithiocarbamate, on the breakdown of indole-3-pyruvic acid to indole-3-acetic acid (IAA). In addition, the degradation of tryptophan, tryptamine, indole-3-pyruvic acid, indole-3-acetaldehyde and indole-3-ethanol to IAA during the purification and analysis of extracts from Pinus sylvestris L. needles, in the presence and absence of sodium diethyldithiocarbamate, has been investigated. The data obtained indicate that if the antioxidant is supplied throughout the analytical sequence there is a marked reduction in the spontaneous formation of IAA from other indolic compounds and, by inference, the stability of indoles in general is enhanced.  相似文献   

6.
Stem segments excised from light-grown Pisum sativum L. (cv. Little Marvel) plants elongated in the presence of indole-3-acetic acid and its precursors, except for L-tryptophan, which required the addition of gibberellin A, for induction of growth. Segment elongation was promoted by D-tryptophan without a requirement for gibberellin, and growth in the presence of both D-tryptophan and L-tryptophan with gibberellin A3, was inhibited by the D-aminotransferase inhibitor D-cycloserine. Tryp-tophan racemase activity was detected in apices and promoted conversion of L-tryptophan to the D isomer; this activity was enhanced by gibberellin A3. When applied to apices of intact untreated plants, radiolabeled D-tryptophan was converted to indole-3-acetic acid and indoleacetylaspartic acid much more readily than L-tryptophan. Treatment of plants with gibberellin A3, 3 days prior to application of labeled tryptophan increased conversion of L-tryptophan to the free auxin and its conjugate by more than 3-fold, and led to labeling of N-malonyl-D-tryptophan. It is proposed that gibberellin increases the biosynthesis of indole-3-acetic acid by regulating the conversion of L-tryptophan to D-tryptophan, which is then converted to the auxin.  相似文献   

7.
Gibberellin Induced Changes in Diffusible Auxins from Savoy Cabbage   总被引:1,自引:0,他引:1  
Diffusates from apices of young plants of savoy cabbage treated with gibberellie acid (GA) and apices of control plants have been examined with respect to their content of Indole auxins. Three indole Compounds were detected and identified on the basis of their chromatographic characteristics in several systems. These compounds were: glucoubrassicin, indole-3-acetic acid (IAA) and indole-3-acetonitrile (IAN). An effect of GA on the total auxin activity of the diffusate was noted 90 hours after treatment, while an increase in stem height occurred 48 hours later. This increase in auxin effect of the entire diffusates was shown bv chromogenic development and bioassay of chromatograms of diffusates to be a result of an increase in level of the IAA content. A concomitant decrease in I the glucobrassicin content was indicated. Since GA was found to have no effect on the enzymatic conversion of tryptophan or tryptamine to IAA, it is proposed that the effect of GA is on the conversion of glucobrassicin to IAA.  相似文献   

8.
Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.  相似文献   

9.
The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed.  相似文献   

10.
Broomrapes (Orobanche spp.) are parasitic plants, whose growth and development fully depend on the nutritional connection established between the parasite and the roots of the respective host plant. Phytohormones are known to play a role in establishing the specific Orobanche-host plant interaction. The first step in the interaction is seed germination triggered by a germination stimulant secreted by the host-plant roots. We quantified indole-3-acetic acid (IAA) and abscisic acid (ABA) during the seed germination of tobacco broomrape (Orobanche ramosa) and sunflower broomrape (O. cumana). IAA was mainly released from Orobanche seeds in host-parasite interactions as compared to non-host-parasite interactions. Moreover, germinating seeds of O. ramosa released IAA as early as 24 h after the seeds were exposed to the germination stimulant, even before development of the germ tube. ABA levels remained unchanged during the germination of the parasites' seeds. The results presented here show that IAA production is probably part of a mechanism triggering germination upon the induction by the host factor, thus resulting in seed germination.  相似文献   

11.
Protoplast preparations from barley (Hordeum vulgare L.) enzymatically converted [5-3H]tryptophan to [3H]indole-3-acetic acid (IAA). Both a chloroplast and a crude cytoplasmic fraction, isolated from protoplasts that had previously been fed [5-3H]tryptophan, contained [3H]IAA. Chloroplast and cytoplasmic preparations, isolated from protoplasts and thereafter incubated with [5-3H]tryptophan, also synthesized [3H]IAA, although, in both instances the pool size was less than 50% of that detected in the in-vivo feeds. There were no significant differences in the amounts of [3H]IAA that accumulated in protoplast and chloroplast preparations incubated in light and darkness.Abbreviations HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - RC radiocounting  相似文献   

12.
Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis is characterized by excessive host tumour formation. U. maydis is able to produce indole-3-acetic acid (IAA) efficiently from tryptophan. To assess a possible connection to the induction of host tumours, we investigated the pathways leading to fungal IAA biosynthesis. Besides the previously identified iad1 gene, we identified a second indole-3-acetaldehyde dehydrogenase gene, iad2. Deltaiad1Deltaiad2 mutants were blocked in the conversion of both indole-3-acetaldehyde and tryptamine to IAA, although the reduction in IAA formation from tryptophan was not significantly different from Deltaiad1 mutants. To assess an influence of indole-3-pyruvic acid on IAA formation, we deleted the aromatic amino acid aminotransferase genes tam1 and tam2 in Deltaiad1Deltaiad2 mutants. This revealed a further reduction in IAA levels by five- and tenfold in mutant strains harbouring theDeltatam1 andDeltatam1Deltatam2 deletions, respectively. This illustrates that indole-3-pyruvic acid serves as an efficient precursor for IAA formation in U. maydis. Interestingly, the rise in host IAA levels upon U. maydis infection was significantly reduced in tissue infected with Deltaiad1Deltaiad2Deltatam1 orDeltaiad1Deltaiad2Deltatam1Deltatam2 mutants, whereas induction of tumours was not compromised. Together, these results indicate that fungal IAA production critically contributes to IAA levels in infected tissue, but this is apparently not important for triggering host tumour formation.  相似文献   

13.
The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed.  相似文献   

14.
Ulrich Schiewer 《Planta》1967,75(2):152-160
Summary Non-sterile and sterile algae converted tryptophan to IAA. The main activity of non-sterile algae was due to marine microorganisms. Sterile algae had a low conversion rate.Paper and thin layer chromatography of ether extracts obtained from the incubation solutions or from sterile algae revealed the presence of IAA, indole-3-aldehyde and indole-3-carboxylic acid. Indole-3-pyruvic acid seemed be present too. On the other hand, tryptamine, indole-3-acetonitrile, or indole-3-acetamide never could be detected.Therefore in algae the pathway of the IAA-formation from tryptophan seems to include a transaminase reaction furnishing indole-3-pyruvic acid.

Aus einer Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock (Schiewer, 1965).  相似文献   

15.
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.  相似文献   

16.
Müller A  Weiler EW 《Planta》2000,211(6):855-863
 The tryptophan auxotroph mutant trp3-1 of Arabidopsis thaliana (L.) Heynh., despite having reduced levels of l-tryptophan, accumulates the tryptophan-derived glucosinolate, glucobrassicin and, thus, does not appear to be tryptophan-limited. However, due to the block in tryptophan synthase, the mutant hyperaccumulates the precursor indole-3-glycerophosphate (up to 10 mg per g FW). Instability of indole-3-glycerophosphate leads to release of indole-3-acetic acid (IAA) from this metabolite during standard workup of samples for determination of conjugated IAA. The apparent increase in “conjugated IAA” in trp3-1 mutant plants can be traced back entirely to indole-3-glycerophosphate degradation. Thus, the levels of neither free IAA nor conjugated IAA increase detectably in the trp3-1 mutant compared to wild-type plants. Precursor-feeding experiments to shoots of sterile-grown wild-type plants using [2H]5-l-tryptophan have shown incorporation of label from this precursor into indole-3-acetonitrile and indole-3-acetic acid with very little isotope dilution. It is concluded that Arabidopsis thaliana shoots synthesize IAA from l-tryptophan and that the non-tryptophan pathway is probably an artifact. Received: 1 March 2000 / Accepted: 10 April 2000  相似文献   

17.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

18.
The biosynthetic route of the key plant hormone, indole-3-acetic acid (IAA) has confounded generations of biologists. Evidence in higher plants has implicated two auxin intermediates with roles established in bacteria: indole-3-acetamide (IAM) and indole-3-pyruvic acid. Herein, the IAM pathway is investigated in pea (Pisum sativum), a model legume. The compound was not detected in pea tissue, although evidence was obtained for its presence in Arabidopsis, tobacco, and maize. Deuterium-labeled tryptophan was not converted to IAM in pea roots, despite being converted to IAA. After feeds of deuterium-labeled IAM, label was recovered in the IAA conjugate IAA-aspartate (IAAsp), although there was little or no labeling of IAA itself. Plants treated with IAM did not exhibit high-IAA phenotypes, and did not accumulate IAA. This evidence, taken together, indicates that although exogenous IAM may be converted to IAA (and further to IAAsp), the IAM pathway does not operate naturally in pea roots.  相似文献   

19.
生长素合成途径的研究进展   总被引:5,自引:0,他引:5  
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素, 参与植物生长发育的许多过程。植物和一些侵染植物的病原微生物都可以通过改变生长素的合成来调节植株的生长。吲哚-3-乙酸(IAA)是天然植物生长素的主要活性成分。近年来, 随着IAA生物合成过程中一些关键调控基因的克隆和功能分析, 人们对IAA的生物合成途径有了更加深入的认识。IAA的生物合成有依赖色氨酸和非依赖色氨酸两条途径。依据IAA合成的中间产物不同, 依赖色氨酸的生物合成过程通常又划分成4条支路: 吲哚乙醛肟途径、吲哚丙酮酸途径、色胺途径和吲哚乙酰胺途径。该文综述了近几年在IAA生物合成方面取得的新进展。  相似文献   

20.
Indole reacts with sodium nitrite and glycine-HCl buffer, pH 2.6, to form a red color that is stable for more than 1 week. The reaction is reproducible and is linear over a wide range of indole concentrations (0.05–1.00 μmol). Twelve indole derivatives, including tryptophan, and 17 protein amine acids do not interfere. Indole-3-acetic acid, indole-3-acrylic acid, indole-3-pyruvic acid, 5-indole carboxylic acid, and 5-hydroxyindole-3-acetic acid interfere to varying extents (16–27%). Free indole was determined in biological material containing tryptophan by the present method. The method is also applicable to the assay of tryptophanase activity without prior indole extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号