首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
动物传粉植物花粉呈现时序的进化意义   总被引:7,自引:0,他引:7  
陆婷  谭敦炎 《生物多样性》2007,15(6):673-679
由动物传粉的植物为了使供体花粉能够被高效地传递到受体柱头上, 进化出了多种多样的花部特征, 花粉呈现时序便是其中之一。植物主要通过包装机制和分摊机制控制花粉呈现的速度以限制昆虫一次拜访转移的花粉量。花粉呈现理论(PPT)认为: 花粉逐步呈现策略倾向于出现在传粉者数量丰富但传粉效率低的植物中, 而花粉同时呈现策略则多出现在传粉者少但传粉效率高的植物中。本文对花粉呈现时序的相关研究进行了总结, 重点介绍: (1) 限制花粉转移的花部机制; (2)花粉呈现理论; (3)花粉呈现时序的适应意义。目前的研究主要集中在花粉呈现时序对传粉动物的适应性上, 但环境因子对花粉呈现时序也有一定的影响。PPT数学模型还不能完全预测特定环境中植物的花粉呈现时序。因此, 有必要选择合适的植物类群, 从花部综合特征、传粉系统、交配系统和环境等方面进行综合研究, 进一步揭示动物传粉植物花粉呈现时序的适应意义。  相似文献   

2.
Pollen presentation theory (PPT) predicts that plant species typically pollinated by frequent and wasteful pollinators ought to be much more parsimonious and only gradually release pollen compared to plant species pollinated by infrequent pollinators that are efficient at delivering the pollen they remove. To test PPT, we compare the pollen presentation schedules and pollination systems in three related Epimedium species, having different pollinators. Results showed that differences in anther dehiscence and flowering traits resulted in different pollen packaging schedules. For Esutchuenense and Efranchetii, a special ‘roll‐up’ movement of the anther wall during anther dehiscence increased pollen removal compared to the dehiscence pattern in Emikinorii, which lacked the ‘roll‐up’ movement. Investigations revealed that honeybees had a higher pollen removal rate and lower stigmatic pollen load compared to bumblebees. In accordance with PPT, Esutchuenense presents pollen sequentially and slowly for the frequent and wasteful honeybees. In comparison to Esutchuenense, Efranchetii had a faster presentation rate and was adapted to the efficient and infrequent bumblebees. However, Emikinorii was pollinated by both bumblebees and honeybees at high frequency and had the fastest pollen presentation. This pattern could reduce pollen wastage by honeybees and might be an adaptation to its short flower longevity (less than 1 day), to increase the chances of pollen deposition on stigmas. The study indicates that pollen presentation schedules can be a consequence of interactions among anther dehiscence, flowering traits and pollination environments for a given species.  相似文献   

3.
Abstract Animal‐pollinated plant species modulate the presentation of pollinator rewards to maximize reproductive success. In plants providing pollen as the only reward for pollinators, it is usually difficult to unravel the dual roles of reward presentation and the realization of male and female functions (pollen removal and deposition). Exploiting the two types of anther in the androecia of Melastoma malabathricum L., we examined whether the removal of pollen for reward is regulated primarily to favor male function or female function. Pollen removal by carpenter bees from the feeding and pollination anthers, as well as pollen deposition on the stigmas, were quantified during anthesis of M. malabathricum. There was no significant difference in pollen removal rates from the feeding and pollination anthers of M. malabathricum between the onset of anthesis and flower wilting. The stigmatic pollen loads exceeded the ovule number after three sonication bouts, and female function was satisfied earlier than male function. The results support the hypothesis that the presentation of pollination reward in this species is regulated primarily to favor the expression of male function, rather than female function, in agreement with the pollen‐donation hypothesis. A cooperative relationship between the feeding and pollination anthers was demonstrated in heterantherous flowers, which optimizes the balance in investments between pollinator rewards and “functional pollen” for gene transfer.  相似文献   

4.
花粉的时序呈现是指植物花药按一定次序释放花粉的现象, 被认为是对传粉者访问频率的一种适应。在传粉者充足的环境中, 植物通过限制花粉1次被移出的数量, 使花粉供体能作为多个父本, 从而提高雄性适合度。该文从开花习性、花部特征、传粉者及繁育系统等方面对早春短命植物黑鳞顶冰花(Gagea nigra)的花粉呈现时序及其适应性进行研究, 结果表明, 黑鳞顶冰花单花期约5-7天; 白天开放, 晚上闭合, 花药次序开裂, 呈拉链式散粉, 散粉期4-6天。黑鳞顶冰花以异交为主, 部分自交亲和。蝇类和食蚜蝇为主要传粉者, 访花频率为(0.141±0.078) flower∙h-1。在雄蕊的时序散粉过程中, 雌蕊持续生长, 经历了从低于雄蕊到等高、再到高于雄蕊阶段。在等高阶段, 单花早晚的开闭, 使得雌雄蕊紧靠在一起, 促成了自动自花授粉。在传粉者缺乏的环境中, 黑鳞顶冰花的花粉时序呈现延长了散粉期, 在等待传粉者和分摊风险方面具重要作用。这种花粉渐次呈现的策略, 在新疆的早春开花植物中可能广泛存在。  相似文献   

5.
Flowers of most plant species are visited by a variety of animals. Some of these visitors are effective pollinators while others remove resources without transferring pollen. Studies comparing the effectiveness of different visitors as pollinators often compare taxa without considering variation in behavior within a taxon. Wilson and Thomson (Ecology 72: 1503-1507, 1991) documented the effects of honey bees and bumble bees on the pollination dynamics of Impatiens capensis. They found that pollen-collecting honey bees removed large numbers of pollen grains from anthers but deposited little of it on stigmas; bumble bees, which sought nectar, removed less pollen but deposited more of it on stigmas. It is unclear whether the low pollen transfer efficiencies of honey bees are explained by their morphology or by their pollen-collecting behavior. We repeated the work of Wilson and Thomson at a site where honey bees were foraging for nectar, not pollen. We measured the quantity of pollen remaining in anthers, the number of pollen grains deposited on stigmas, and seed production after single visits by honey bees and bumble bees. The differences between the taxa disappeared when they were foraging in a similar manner. Our results clearly demonstrate the importance of foraging behavior on the pollination effectiveness of floral visitors.  相似文献   

6.
Evolutionary transitions from animal to wind pollination have occurred repeatedly during the history of the angiosperms, but the selective mechanisms remain elusive. Here, we propose that knowledge of pollen release biomechanics is critical for understanding the ecological and evolutionary processes underpinning this shift in pollination mode. Pollen release is the critical first stage of wind pollination (anemophily) and stamen properties are therefore likely to be under strong selection early in the transition. We describe current understanding of pollen release biomechanics to provide insights on the phenotypic and ecological drivers of wind pollination. Pollen release occurs when detachment forces dominate resistive forces retaining pollen within anthers. Detachment forces can be active or passive depending on whether they require energy input from the environment. Passive release is more widespread in anemophilous species and involves processes driven by steady or unsteady aerodynamic forces or turbulence-induced vibrations that shake pollen from anthers. We review empirical and theoretical studies suggesting that stamen vibration is likely to be a key mechanism of pollen release. The vibration response is governed by morphological and biomechanical properties of stamens, which may undergo divergent selection in the presence or absence of pollinators. Resistive forces have rarely been investigated for pollen within anthers, but are probably sensitive to environmental conditions and depend on flower age, varying systematically between animal- and wind-pollinated species. Animal and wind pollination are traditionally viewed as dichotomous alternatives because they are usually associated with strikingly different pollination syndromes. But this perspective has diverted attention from subtler, continuously varying traits which mediate the fluid dynamic process of pollen release. Reinterpreting the flower as a biomechanical entity that responds to fluctuating environmental forces may provide a promising way forward. We conclude by identifying several profitable areas for future research to obtain deeper insight into the evolution of wind pollination.  相似文献   

7.
Pollination precision and efficiency have been deemed to be important driving forces in floral evolution. Herkogamy reduction is a main mechanism to increase pollination precision. Secondary pollen presentation (SPP), by which pollen is presented on other floral organs especially pistils, has been widely accepted as a special mechanism to increase pollen transfer precision through spatial reduction of the anther–stigma distance, that is, minimized herkogamy. This overlooks a potential driving force, that is expanding the pollination niche through converting pollen thieves and nectar robbers into effective pollinators. We selected two species as study models with typical pistillate SPP, Pavetta hongkongensis Bremek. (Rubiaceae) and Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae). In both species, two distinct pollinator functional groups were recognized. Short-tongued bees and flies fed on pollen on stigmas but also stole pollen from anthers and robbed nectar, whereas long-tongued hawkmoths and butterflies only collected nectar. Emasculation had no influence on long-tongued pollinators, but significantly decreased the visitation frequency of short-tongued visitors and fruit set, compared to intact flowers, demonstrating short-tongued visitors did not effectively pollinate and acted merely as pollen thieves or nectar robbers when SPP was absent. Data from the two plant species clearly indicated pistillate SPP has additional adaptive advantages of converting ineffective visitors into pollinators and consequently widening the pollination niche, which could help plants overcome environmental stochasticity. Our results suggest that multiple selective forces drive the evolution of SPP and the minimization of herkogamy.  相似文献   

8.
In many nectarless flowering plants, pollen serves as both the carrier of male gametes and as food for pollinators. This can generate an evolutionary conflict if the use of pollen as food by pollinators reduces the number of gametes available for cross‐fertilization. Heteranthery, the production of two or more stamen types by individual flowers reduces this conflict by allowing different stamens to specialize in ‘pollinating’ and ‘feeding’ functions. We used experimental studies of Solanum rostratum (Solanaceae) and theoretical models to investigate this ‘division of labour’ hypothesis. Flight cage experiments with pollinating bumble bees (Bombus impatiens) demonstrated that although feeding anthers are preferentially manipulated by bees, pollinating anthers export more pollen to other flowers. Evolutionary stability analysis of a model of pollination by pollen consumers indicated that heteranthery evolves when bees consume more pollen than should optimally be exchanged for visitation services, particularly when pollinators adjust their visitation according to the amount of pollen collected.  相似文献   

9.
Butterfly pollination in the tropics is considered somewhat effective or solely effective in a few plant species. In the present study, we tested the hypothesis that Mandevilla tenuifolia (Apocynaceae), which has floral attributes associated with psychophily, has strategies adapted to pollination by butterflies, restricting other floral visitors and making these insects act as efficient pollinators. We analysed the floral and reproductive biology of M. tenuifolia, as well as the frequency and efficiency of its flower visitors. M. tenuifolia is an herb whose flowers have strong herkogamy and secondary pollen presentation on the style head, which corresponds to 60.4% of pollen on the anthers. Flower longevity and the long period of receptivity of the stigmatic region associated with the large amount of pollen removed in the first visits suggest that flowers remain functionally female during part of anthesis. Butterflies, mainly of the families Nymphalidae and Pieridae, are the only pollinators of M. tenuifolia. Despite being self‐compatible, M. tenuifolia depends on biotic vectors for fruit production. A non‐significant difference in fruit set between controlled treatments and natural conditions suggests that the pollinators are efficient. The inclination resulting from the landing of butterflies on flowers, together with flower morphology, guiding the insect proboscis inside the floral tube, as well as the frequency and efficiency of butterfly visits, are evidence of the close relationship between butterflies and M. tenuifolia, and also of the efficiency of these insects as pollinators.  相似文献   

10.
  • Heteranthery, the presence of feeding and pollinating anthers in the same flower, seems to mediate the evolutionary dilemma for plants to protect their gametes and yet provide food for pollinators. This study aims to elucidate the role of heteranthery in the buzz‐pollinated Senna reniformis.
  • The fecundity of pollen from long‐, medium‐ and short‐sized anthers was determined by hand cross‐pollination experiments, and the quantity, size, ornamentation and viability of pollen of different anthers were compared. Rates of flower rejection by bees were measured in anther removal experiments to assess the preferences of flower visitors for feeding or pollinating anthers.
  • Large bees, which were the effective pollinators of self‐incompatible S. reniformis, avoided flowers without short feeding anthers, but not those without medium or long anthers. Illegitimate small and medium‐sized bees were unresponsive to anther exclusion experiments. Long anthers deposited pollen on the back and short anthers on the venter of large bees. Pollen from long anthers had higher in vitro viability and higher fruit and seed set after cross‐pollination than pollen from other sized anthers.
  • Short anthers produce feeding pollen to effective pollinators and long anthers are related to pollination of S. reniformis. Bee behaviour and size was found to directly influence the role of anthers in the ‘division of labour’. Only large bee pollinators that carry the pollinating pollen from long anthers in ‘safe sites’ associated short anthers with the presence of food. In the absence of these larger bee pollinators, the role of heteranthery in S. reniformis would be strongly compromised and its function would be lost.
  相似文献   

11.
Most species in Melastomataceae have poricidal anthers related to specialised bee buzz‐pollination, while some have anthers with large openings associated to non‐bee pollination systems. We tracked the evolution of anther morphology and seed number on the Miconieae phylogenetic tree to understand the evolutionary shifts in such pollination systems. Anther morphometric data and seed number were recorded for 54 taxa. Pollinators (bees, flies, wasps) were recorded for 20 available species. Ancestral state reconstruction was made using Maximum Likelihood from nrITS sequences. We used phylogenetic eigenvector regressions to estimate phylogenetic signal and the adaptive component for these traits. Species pollinated by bees or bees and wasps tend to have smaller pores and fruits with more seeds. Species pollinated by flies or flies and bees and/or wasps tend to have larger pores and fruits with less seeds. Independent evolution occurred three times for anthers with large pores and twice for fruits with few seeds. We detected a phylogenetic signal in both traits, and negative correlated evolution between them. In actinomorphic small‐flowered Miconieae, changes in anther morphology can be related to generalisation in the pollination system incorporating flies and wasps as pollinators and lessening the importance of buzzing bees in such process. Differences in pollen removal and deposition may explain differences in anther morphology and seed number in Miconieae.  相似文献   

12.
Nathan Muchhala 《Biotropica》2008,40(3):332-337
What causes flowers to diverge? While a plant's primary pollinator should strongly influence floral phenotype, selective pressures may also be exerted by other flower visitors or competition with other plants for pollination. Species of the primarily bat‐pollinated genus Burmeistera (Campanulaceae) frequently cooccur, with up to four species in a given site, and broadly overlap in flowering phenology, typically flowering throughout the year. The genus displays extensive interspecific variation in floral morphology in the degree that the reproductive parts (anthers and stigma) are exserted outside of the corolla, and species can be roughly classified as either long or short‐exserted. I tested two hypotheses regarding the functional significance of such variation: (1) exsertion lengths correspond to pollination by bat species of different sizes; and (2) variation serves to partition pollinator's bodies spatially and thus reduces interspecific pollen transfer. I captured bats in Ecuador to evaluate the identity and location of the Burmeistera pollen they were carrying. Results show that exsertion does not correspond to specialization on different pollinators; different bat species carried pollen of both flower types just as frequently. In support of the second hypothesis, pollen from flowers of different exsertion lengths was found to occur on different regions of bats' heads. This may serve to reduce competition for pollination among coexisting Burmeistera.  相似文献   

13.
Pollination success of plants is highly susceptible to the frequency of visits and foraging behavior of pollinators. Pollination of the nectarless flowers of Pedicularis species depends on bumblebee workers collecting pollen by vibrating the anthers (buzz pollination). However, little is known about the efficiency of the pollination system. Foraging behavior, pollen removal from anthers and pollen deposition on stigmas of P. chamissonis were studied to assess the effectiveness of buzz pollination in an alpine snowbed population of northern Japan. Although bumblebees tended to visit most of the flowers open at a given time within inflorescences during a single visit, pollen removal rate at the first visit was about 20%, and buzzing period decreased with increasing number of previous visits, resulting in a decreasing proportion of pollen removed per visit as the number of visits increased. These trends enable plants to provide pollen for more pollinators. The number of pollen grains deposited on stigmas was not saturated during the first visit and increased with additional visits. Irrespective of weak self-compatibility, evidence of interference between self and outcross pollen was lacking for seed production. Therefore, buzz pollination in P. chamissonis acts as a mechanism that improves the chance of cross-pollination upon multiple visits if pollinator visitation is frequent.  相似文献   

14.
异型花柱是受遗传控制的花柱多态现象, 被达尔文认为是植物通过在传粉者体表不同部位滞落花粉以促进型间花粉准确传递的一种适应。该现象虽已受到广泛关注, 但在一些花型变异较大且不稳定的传粉系统中, 不同传粉者对各花型繁殖所产生的影响仍知之甚少。该研究以分布于新疆天山南坡的一个有同长花柱共存的异型花柱植物喀什补血草(Limonium kaschgaricum)种群为研究对象, 对其花型构成及频率、传粉者及花粉转移效率等进行了调查分析。结果表明: 1)种群中除了存在雌/雄蕊长度交互对应的长(L)/短(S)花柱型花外, 还有雌/雄蕊同长的花(H型), 且各花型花的花冠口直径、花冠筒长及花粉量等参数间无差异, 但花粉纹饰和柱头乳突细胞形态具二型性。其中, H型花的花粉和柱头形态与L型花(或S型花)的一致。2)花型内和自花授粉均不亲和; 型间授粉时, 花粉和柱头形态不同的花型间亲和, 反之不亲和。3)种群内存在长/短吻两类传粉昆虫。在以短吻传粉者为主的盛花初、中期, L和H型花柱头上的异型花粉数均显著高于S型花的, 且L和S型花高位性器官间的异型花粉传递效率高于低位性器官间的; 而在以长吻传粉者为主的盛花后期, L和S型花的柱头间异型花粉数无显著差异, 且高/低位性器官间具有相同的异型花粉转移效率; 与传粉者出现时期相对应的、在花期不同阶段开放花的结实率也明显不同。4)长/短吻昆虫具明显不同的传粉功能, 短吻昆虫只能对L和H型花进行有效传粉, 且访花频率和型间花粉转移效率较低, 为低效传粉者; 而长吻昆虫对各花型均能有效传粉, 具高的访花频率和型间花粉转移效率, 为高效传粉者。因为长吻昆虫的阶段性出现所形成的不稳定传粉系统, 使低效的短吻昆虫可能会成为种群中花型变异的驱动力, 并使S型花受到更大的选择压力。H型花克服了柱头缩入的弊端, 可能会成为不稳定传粉系统下的一个替代花型而持续存在。  相似文献   

15.
The pollen donor and pollinator attractor hypotheses are explanations for the functions of the male flowers of andromonoecious plants. We tested these two hypotheses in the andromonoecious shrub Capparis spinosa L. (Capparaceae) and confirmed that pollen production and cumulative volume and sugar concentration of nectar do not differ between male and perfect flowers. However, male flowers produced larger anthers, larger pollen grains and smaller ovaries than perfect flowers. Observations on pollinators indicated that two major pollinators (Xylocopa valga Gerst and Proxylocopa sinensis Wu) did not discriminate between flower morphs and that they transferred pollen grains a similar distance. However, there were more seeds per fruit following hand pollination with pollen from male flowers than from perfect flowers. Individuals of C. spinosa with a larger floral display (i.e. bearing more flowers) received more pollen grains on the stigma of perfect flowers. Female reproductive success probably is not limited by pollen. These results indicate that male flowers of C. spinosa save resources for female function and that they primarily serve to attract pollinators as pollen donors.  相似文献   

16.
Aims In heterantherous plants, 'division of labor' among structurally different stamens, i.e. pollinating and feeding functions, has been thought to reduce the evolutionary conflict of relying on pollen both as the carrier of male gametes and as the food for pollinators. The key to successful division of labor among different sets of stamens is the size match between stamens and legitimate pollinators, which results in the precise deposition of pollen onto specific locations on pollinator's body and facilitates cross pollination. However, the potential impact of small illegitimate insects that are ubiquitous during the pollination process on the plant reproduction in heterantherous species has been largely neglected in previous studies and never been demonstrated experimentally.Methods Here, we investigated the functions of three different types of stamens in Commelina communis. The pollinator visitation, pollen removal and deposition were compared among flowers with different types of anthers emasculated at two natural populations. Moreover, the mating systems of C. communis in wild populations were estimated using microsatellite markers.Important findings Our data showed that the main floral visitors for C. communis at the two studied populations were small illegitimate bees rather than legitimate pollinators, accounting for 77.5 and 92.2% of total flower visits, respectively. Flower manipulations in C. communis demonstrated that the two types of brightly yellow stamens separately functioned as 'deceptive attraction' and 'feeding' functions. Although the brown inconspicuous stamens of C. communis with the largest amount of fertile pollen had the potential function in offering pollen for cross pollination, the high ratio of illegitimate visitation by small bees significantly affected the dispersal and deposition of pollen from the pollinating anthers, and subsequently decreased the levels of outcrossing (t m = 0.23–0.32) in wild populations. Our work further confirmed that the size match between pollinators and the floral morphology is the prerequisite to successfully fulfill the functional differentiation among different sets of stamens in heterantherous plants. Local high ratio of illegitimate visitation by size unmatched insects could significantly weaken the potential functions of heteranthery, affecting the dispersal and deposition of functional pollen in heterantherous plants and further the whole mating systems.  相似文献   

17.
In a fig-fig wasp symbiosis, we have discovered that male fig pollinators (Alfonsiella fimbriata Waterston) bite into the dehiscent anthers of Ficus natalensis leprieuri Miq., thus scattering the pollen grains throughout the syconium. Female pollinators are the only ones to transfer pollen to conspecific trees, and collect pollen actively from the anthers only. Thus, this male behaviour appears to be antagonistic to the pollination process. We compare different wasp pollinating behaviours between fig species exhibiting dehiscent and non-dehiscent anthers and conclude that this male behaviour is new and not required with spontaneously dehiscent anthers. These findings could suggest a host shift of Alfonsiella fimbriata.  相似文献   

18.
郭艳峰  刘妍  蒋谦才  孙红梅 《广西植物》2016,36(11):1318-1324
猪屎豆( Crotalaria pallida)为典型的蝶形花植物,分布极广,是路边或遭破坏生境中最常见的先锋种之一,野外观察未发现其有营养生殖的现象,主要为种子繁殖。该研究通过对自然生境中猪屎豆开花物候、访花昆虫及繁育系统的研究,旨在从繁殖的角度阐述其快速扩张的能力。结果表明:尽管猪屎豆的主要访花昆虫是蜜蜂,但蜜蜂的访花频率极低[(1.73±1.30)次/花序·h-1],且在整个花期内花药和柱头均被龙骨瓣包裹,蜜蜂访花时未成功接触柱头和花粉,不能实现传粉,因此蜜蜂不是猪屎豆有效的传粉昆虫,这与假说“蝶形花普遍是对膜翅目昆虫,尤其是对蜜蜂传粉的适应”不一致。人工授粉结果显示,猪屎豆为自交亲和种,不存在无融合生殖现象,其繁殖主要通过主动自交生产种子来实现,且在自交过程中长短花药都参与主动自交。这种自交方式不同于其他蝶形花植物的主动自交仅由短花药实现。对猪屎豆而言,长短花药均参与自交能够增加柱头的授粉几率,保证其在不利的生境中成功结籽,是其成功扩张的关键因素之一。  相似文献   

19.
Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollinators to approaching a flower from a single direction facilitates specific placement of pollen on the pollinator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally symmetrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator-mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation.  相似文献   

20.
Flowers that are open for >12 h may be visited by both diurnal and nocturnal pollinators. I compared the effectiveness (measured as seed production and pollen movement distance) of diurnal and nocturnal pollinators of Silene alba, a species whose flowers open in evening but close by midmorning the following day. By bagging flowers either during evening hours or during daylight hours or both day and night, I compared seed production caused by diurnal and nocturnal pollinators. Flowers exposed only to nocturnal visitors (mostly sphingid and noctuid moths) produced significantly more seeds than flowers exposed only to diurnal visitors (bees, flies, and wasps). Fluorescent dye applied to anthers moved significantly further and to more stigmas at night than during the day. In both measures of pollination effectiveness, nocturnal-visiting moths are better pollinators of S. alba than are the diurnal-visiting bees, flies, and wasps. These data support the hypothesis that floral phenology is an adaptation to expose flowers to the most effective pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号