首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

2.
Hyodo H 《Plant physiology》1977,59(1):111-113
Isolated albedo tissue of Satsuma mandarin (Citrus unshiu Marcovitch, cv. Owari) fruit produced a large quantity of ethylene during incubation at 26 C in the dark. When sliced, albedo tissue began producing ethylene at an increasing rate until a maximum was reached after incubation for about 30 hours. Aged albedo discs which were capable of producing ethylene, actively converted l-[U-(14)C]methionine into both ethylene and carbon dioxide. In fresh tissue, almost no measurable conversion of radioactive methionine into ethylene took place. Conversion of labeled l-methionine into ethylene was totally inhibited by the addition of nonradioactive l-methionine or l-ethionine. It appears possible, from these findings, that methionine is a precursor of ethylene in the aged albedo discs. Ethylene synthesis in the aged albedo tissue was markedly reduced in the presence of cycloheximide, suggesting that there may be a rapid turnover of the ethylene-producing system, and that its formation involves protein synthesis. Actinomycin D exerted no effect.  相似文献   

3.
Y. Liu  N. E. Hoffman  S. F. Yang 《Planta》1985,164(4):565-568
The increase in ethylene formation and in 1-aminocyclopropane-1-carboxylic acid (ACC) content in flavedo tissue of grapefruit (Citrus paradisi Macfad. cv. Ruby Red) in response to excision was markedly inhibited by exogenous ethylene. Ethylene treatment inhibited the synthesis of ACC, but increased the tissue's capability to malonylate ACC to N-malonyl-ACC, resulting in further reduction in the endogenous ACC content. The development of extractable ACC-malonyl-transferase activity in the tissue was markedly promoted by treatment with exogenous ethylene. These results indicate that the autoinhibition of ethylene production in this tissue results not only from suppression of ACC synthesis, but also from promotion of ACC malonylation; both processes reduce the availability of ACC for ethylene synthesis.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine (2-amino-4-(2-aminoexthoxy)-trans-3-butenoic acid) - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid  相似文献   

4.
This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [(14)C] ethylene production from [(14)C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [(14)C]ethylene production from [(14)C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [(14)C]ethylene production from [(14)C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [(14)C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [(14)C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine --> SAM --> ACC --> ethylene pathway in avocado and do not suggest the operation of an alternate pathway.  相似文献   

5.
The flux of radioactivity from 3,4-[(14)C]methionine into S-adenosyl-l-methionine (SAM), 1-aminocyclopropane-1-carboxylic acid (ACC), spermine, and spermidine while inhibiting conversion of ACC to ethylene by 100 millimolar phosphate and 2 millimolar Co(2+) was studied in aged peel discs of orange (Citrus sinensis L. Osbeck) fruit. Inhibition up to 80% of ethylene production by phosphate and cobalt was accompanied by a 3.3 times increase of label in ACC while the radioactivity in SAM was only slightly reduced. Aminoethoxyvinylglycine (AVG) increased the label in SAM by 61% and reduced it in ACC by 47%. Different combinations of standard solution, in which putrescine or spermidine were administered alone or with AVG, demonstrated clearly that inhibition of ethylene biosynthesis-at the conversion of SAM to ACC-by AVG, exogenous putrescine or exogenous spermidine, stimulated the incorporation of 3,4-[(14)C]methionine into spermidine.  相似文献   

6.
7.
The pathway of ethylene biosynthesis in auxin-treated mung beanhypocotyls was investigated by comparing the specific radioactivitiesof ethylene produced and S-adenosylmethionine (SAM) in the tissuefollowing the administration of 3,4-14C-methionine, and by analyzingthe methionine metabolites. When the rate of auxin-induced ethyleneproduction was low due to a low concentration of auxin, thespecific radioactivity of ethylene released was always higherthan that of SAM in the tissue. When the tissue was treatedwith auxin, the tissue produced and accumulated a methioninemetabolite which was converted into ethylene more efficientlythan methionine. The metabolite was identified as 1-aminocyclopropane-l-carboxylicacid (ACC) by means of paper and thin-layer chromatography,high voltage paper electrophoresis and co-crystallization. ACCformation was neither inhibited by low oxygen nor by the inhibitoryprotein of ethylene synthesis, but inhibited by aminoethoxyvinylglycine(AVG). ACC application to the tissue greatly reduced incorporationof 3,4-14C-methionine into ethylene. The control tissue thatwas not treated with auxin also converted ACC into ethyleneindicating that the enzyme which converts ACC into ethyleneis already present in the tissue and that auxin induced productionof the enzymatic system responsible for the conversion of methionineinto ACC. Ethylene synthesis from ACC was not inhibited by AVG,abscisic acid, cycloheximide or actinomycin D, but inhibitedby low oxygen and the inhibitory protein. (Received November 21, 1979; )  相似文献   

8.
Using leaf epidermis from Vicia faba, we tested whether auxin-induced stomatal opening was initiated by auxin-induced ethylene synthesis. Epidermis was dark-incubated in buffered KNO3 containing 0.1 mM alpha-napthalene acetic acid or 1 mM indole-3-acetic acid. Maximum net opening was ca. 4 micron after 6 h. Opening was reversed by 20 microM ABA, 0.1 mM CaCl2. 1-Aminocyclopropane carboxylic acid (ACC) synthase catalyzes synthesis of ACC, the immediate precursor to ethylene. Auxin-induced stomatal opening was fully inhibited by 10 microM 1-aminoethoxyvinylglycine (AVG), an ACC synthase inhibitor. In solutions containing AVG, auxin-induced opening was restored in a concentration-dependent manner by exogenous ACC, but not in control solutions lacking an auxin. ACC-mediated reversal of AVG-inhibition of stomatal opening was inhibited by alpha-aminoisobutyric acid (AIB), an inhibitor of ACC oxidase, the last enzyme in the ethylene biosynthetic pathway, by 10 microM silver thiosulfate (STS), an inhibitor of ethylene action, and by 20 microM ABA, 0.1 mM CaCl2. CoCl2, an inhibitor of ethylene synthesis, also inhibited auxin-induced opening. Both STS and CoCl2 inhibited opening induced by light or by fusicoccin, but neither light- nor fusicoccin-induced opening was inhibited by AVG. These results support the hypothesis that auxin-induced stomatal opening is mediated through auxin-induced ethylene production by guard cells.  相似文献   

9.
Well before pollen tube penetration, ethylene has begun to disseminate from pollinated styles of Petunia hybrida flowers. Previous stigmatic application of aminoethoxyvinylglycine (AVG) completely prevented this ethylene synthesis, indicating that the endogenous 1-aminocyclopropane-1-carboxylic acid (ACC) in pollen is not readily converted on the stigma. Compared to other flower parts, the capacity of the ethylene forming enzyme was largest in the stigma. When applied to the stigma, ACC caused ethylene synthesis, but did not accelerate wilting, unless high concentrations (20 nanomols) were used. Upon pollination or stigma wounding, the early ethylene evolved exclusively from the gynoecium, much later followed by the synthesis of corolla ethylene. Employing wideneck Erlenmeyer flasks, the competitive inhibitor of ethylene action, norbornadiene, was applied to entire flowers in situ, with delaying effects on wound-induced wilting. In contrast, norbornadiene treatment of styles alone, using capillaries, could not postpone wilting. Pollination with foreign pollen species did not lead to accelerated corolla wilting, notwithstanding considerable synthesis of ethylene during the first 5 hours. In situ treatment of the stigma with AVG considerably delayed wound- and pollination-induced wilting. Removal of the entire AVG-treated style 6 hours after stigma wounding still allowed for the postponement of the accelerated wilting, even at very low concentrations of AVG. It is concluded that early stylar ethylene does not play a role in the acceleration of wilting but that, much later, corolla ethylene does, induced by a mobile wilting factor from the stigma, which is ACC.  相似文献   

10.
Changes in the 1-aminocyclopropane-1-carboxylate (ACC) synthaseactivity which regulates auxin-induced ethylene production werestudied in etiolated mung bean hypocotyl segments. Increasesboth in ethylene production and ACC synthase activity in tissuetreated with IAA and BA were severely inhibited by cycloheximide(CHI), 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide,actinomycin D and -amanitin. Aminoethoxyvinylglycine (AVG),a potent inhibitor of the ACC synthase reaction, increased theactivity of the enzyme in the tissue 3- to 4-fold. This stimulationalso was severely inhibited by the above inhibitors. Stimulationof the increase in the enzyme content by AVG was partially suppressedby an exogenous supply of ACC or ethylene. Suppression of theincrease in the enzyme took place with 0.3 µl/liter ethylene,and inhibition was increased to 10 µl/liter, which caused65% suppression. Air-flow incubation of the AVG-treated tissue,which greatly decreased the ethylene concentration surroundingthe tissue, further increased the amount of enzyme. Thus, oneeffect of AVG is to decrease the ethylene concentration insidethe tissue. The apparent half life of ACC synthase activity,measured by the administration of CHI, was estimated as about25 min. AVG lengthened the half life of the activity about 2-fold.Feedback repression by ethylene in the biosynthetic pathwayof auxin-induced ethylene is discussed in relation to the effectof AVG. (Received January 22, 1982; Accepted March 26, 1982)  相似文献   

11.
The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S -adenosylmethionine (SAM), and 1-aminocyclopropane-1-carboxylic acid (ACC), of basal ethylene biosynthesis. Stress ethylene production induced by ozone, cadmium, or 2,4-dichlorophenoxyacetic acid was inhibited in hydroponically-grown soybean seedlings in a concentration-dependent manner by both AVG and CO2+. The ethylene intermediates evoked responses in intact seedlings similar to that described for endogenous ethylene production in isolated vegetative tissue. The addition of SAM to the hydroponic system relieved AVG inhibition of stress ethylene production. Feeding ACC to the seedlings resulted in increased ethylene production independent of stress application or prior AVG inhibition. Cobalt inhibition of stress ethylene production was relieved by increasing concentrations of ACC. A short lag period of 12–18 min was observed in stress ethylene production following a 30-min ozone exposure. Addition of cycloheximide partially inhibited ozone-induced ethylene production.
These results suggest a common pathway in whole plants for stress ethylene production and endogenous ethylene biosynthesis.  相似文献   

12.
Buffered solutions are used commonly to introduce chemical inhibitors and promoters of ethylene synthesis into plant tissues. Vacuum infiltration of preclimacteric muskmelon (Cucumis melo L.) fruit tissue with a buffer (50 mM MES, pH 6.1) immediately after excision inhibited the wound-induced increase in ethylene production, but it did not suppress the accumulation of 1-aminocyclopropane-l-carboxylic acid (ACC) during the 48 h following injury. The inhibition of ethylene production by infiltration was not reversed by treatment with ACC. If the injured tissue was allowed to age for 3 h before treatment, wound-induced ethylene production in tissue samples was not inhibited by vacuum infiltration with aqueous buffer. The results indicate that infiltration of melon fruit tissue with a liquid medium does not block the development of wound-induced ethylene production by either limiting ACC or inhibiting the ongoing conversion of ACC to ethylene. Liquid infiltration of the tissue appears to interfere with the initiation of physiological events during the first 3 h after wounding that are critical for the subsequent conversion of ACC to ethylene.  相似文献   

13.
《Plant science》1986,47(1):11-14
Wounding delays the loss of chlorophyll (Chl) that normally occurs when oat (Avena sativa L.) leaf segments are held in the dark. There was a continued increase in ethylene production during the senescence of the control segments; in contrast, ethylene production by the wounded segments, although it increased by a factor of 2–3 times, reached its peak in 48 h and then dropped sharply to below the basal level. Added 1-aminocyclopropane-1-carboxylic acid (ACC) caused a very large increase in ethylene production in both control and wounded segments, but it increased the rate of Chl loss, though only marginally. Aminoethoxyvinylglycine (AVG) inhibited ethylene production by both control and wounded segments and this did decrease the Chl loss, but only in the control segments. In the wounded segments, AVG antagonized the Chl-retaining action of the wound. Since wounding delayed the loss of Chl and yet caused a moderate increase in ethylene production, we conclude that the ethylene production by senescing oat leaves is not the main controlling influence in the wounding effect. The data also throw doubt on the causal participation of ethylene in normal Chl loss by these leaves in darkness.  相似文献   

14.
Khan AA  Huang XL 《Plant physiology》1988,87(4):847-852
Relief of salt (0.1 molar NaCl) stress on germination of lettuce (Lactuca sativa L., cv Mesa 659) seeds occurred with applications of 0.05 millimolar kinetin (KIN) and 1 to 10 millimolar 1-aminocyclopropane 1-carboxylic acid (ACC). Treatment with KIN enhanced the pregermination ethylene production under saline condition. A synergistic or an additive enhancement of pregermination ethylene production and germination occurred under saline condition in the presence of KIN and a saturating dose (10 millimolar) of ACC. No KIN-ACC synergism was noted in ethylene production or germination under nonsaline condition. Addition of 1 millimolar aminoethoxyvinylglycine (AVG) inhibited the KIN-enhanced pregermination ethylene production (85 to 89%) and germination (58%) under saline condition but not the synergistic effect of KIN + ACC on ethylene production. Under nonsaline condition, AVG had no effect on germination even though ethylene production was strongly inhibited. Alleviation of salt stress by KIN was inhibited in a competitive manner by 2,5-norbornadiene (NBD) (0.02-0.2 milliliter per liter), and the addition of ACC and/or ethylene reduced this inhibition. An increase in the pregermination ethylene production and germination occurred also by cotylenin E (CN) under saline condition. However, neither AVG (1 millimolar) nor NBD (0.02 to 0.2 milliliter per liter) prevented the relief of salt stress by CN. Thus, KIN may alleviate salt stress on germination by promoting both ACC production and its conversion to ethylene. Rapid utilization of ACC may be the basis for the synergistic or the additive effect of KIN plus ACC. The need for ethylene production and action for the relief of salt stress is circumvented by a treatment with CN.  相似文献   

15.
PENNAZIO  S.; ROGGERO  P. 《Annals of botany》1991,67(3):247-249
Very rapid accumulation of free 1-aminocyclopropane-1-carboxylicacid (ACC), followed by stimulation of ethylene production wereinduced by a Cu2+ in soybean cuttings. The accumulation mustbe attributed to an increase in ACC synthesis, because: (1)it was completely inhibited by aminoethoxyvinylglycine (AVG);and (2) the ethylene stimulation was inhibited by AVG, indicatingthat free ACC cannot be released from its conjugated form. Theactivity of the ethylene-forming enzyme slightly decreased followingthe Cu2+ pulse, and this event was accompanied by a slight increasein electrolyte leakage from the treated soybean tissues. Glycine max L., soybean, ethylene, cupric ion  相似文献   

16.
Exogenously-added ethylene stimulated active sucrose uptakein root discs of sugar beet (Beta vulgaris L.) in a log dose-linearresponse manner. The ethylene precursor, 1-aminocyclopropane-1-carboxylicacid (ACC) stimulated both endogenous ethylene production andsucrose uptake. Conversely, an inhibitor of ACC synthesis, aminoethoxyvinylglycine(AVG) inhibited both endogenous ethylene production and sucroseuptake. Exogenously-added ethylene can overcome the AVG effecton sucrose uptake. Root tissue from freshly-harvested sugarbeet plants contain gas-phase ethylene levels slightly belowthat required to stimulate active sucrose uptake. No differenceswere found in gas-phase ethylene levels in the root tissue ofsugar beet cultivars having different concentrations of sucrose.The root tissue has an inherent capacity to synthesize ACC andethylene at high rates. Like ethylene, propylene can stimulate active sucrose uptakein beet root discs, but it is not detected in the gas phaseof the tissue. Acetylene, propane, and ethane had no effecton sucrose uptake. Exogenously-added IAA and ABA each make ethylenesensitivetissue insensitive to ethylene stimulation of sucrose uptake.Other plant hormones have no apparent effect on the ethyleneresponse. The role that ethylene may play on sucrose uptakein root tissue of sugar beet is discussed. (Received February 12, 1986; Accepted April 22, 1986)  相似文献   

17.
Riov J  Yang SF 《Plant physiology》1982,69(3):687-690
Wound ethylene formation induced in flavede tissue of citrus fruit (Citrus paradisi MacFad. cv. Ruby Red) by slicing was almost completely inhibited by exogenous ethylene. The inhibition lasted for at least 6 hours after removal of exogenous ethylene and was then gradually relieved. The extent of inhibition was dependent upon the concentration of ethylene (1 to 10 microliters/liter) and the duration of treatment. The increase in wound ethylene production in control discs was paralleled by an increase in 1-aminocyclopropane-1-carboxylic acid (AAC) content, whereas in ethylene-treated discs there was little increase in ACC content. Application of ACC completely restored ethylene production in ethylene-pretreated discs, indicating that the conversion of ACC to ethylene is not impaired by the presence of ethylene. Thus, autoinhibition of ethylene synthesis was exerted by reducing the availability of ACC. Ethylene treatment resulted in a decrease in extractable ACC synthase activity, but this decrease was too small to account for the marked inhibition of ACC formation. The data indicate that autoinhibition of ethylene production in citrus flavede discs results from suppression of ACC formation through repression of the synthesis of ACC synthase and inhibition of its activity.  相似文献   

18.
Yu YB  Yang SF 《Plant physiology》1979,64(6):1074-1077
Auxin is known to stimulate greatly both C2H4 production and the conversion of methionine to ethylene in vegetative tissues, while amino-ethoxyvinylglycine (AVG) or Co2+ ion effectively block these processes. To identify the step in the ethylene biosynthetic pathway at which indoleacetic acid (IAA) and AVG exert their effects, [3-14C]methionine was administered to IAA or IAA-plus-AVG-treated mung bean hypocotyls, and the conversion of methionine to S-adenosylmethionine (SAM), 1-amino-cyclopropane-1-carboxylic acid (ACC), and C2H4 was studied. The conversion of methionine to SAM was unaffected by treatment with IAA or IAA plus AVG, but active conversion of methionine to ACC was found only in tissues which were treated with IAA and which were actively producing ethylene. AVG treatment abolished both the conversion of methionine to ACC and ethylene production. These results suggest that in the ethylene biosynthetic pathway (methionine → SAM → ACC → C2H4) IAA stimulates C2H4 production by inducing the synthesis or activation of ACC synthase, which catalyzes the conversion of SAM to ACC. Indeed, ACC synthase activity was detected only in IAA-treated tissues and its activity was completely inhibited by AVG. This conclusion was supported by the observation that endogenous ACC accumulated after IAA treatment, and that this accumulation was completely eliminated by AVG treatment. The characteristics of Co2+ inhibition of IAA-dependent and ACC-dependent ethylene production were similar. The data indicate that Co2+ exerts its effect by inhibiting the conversion of ACC to ethylene. This conclusion was further supported by the observation that when Co2+ was administered to IAA-treated tissues, endogenous ACC accumulated while ethylene production declined.  相似文献   

19.
Auxin-induced ethylene biosynthesis and its regulatory stepsin etiolated mung bean hypocotyl segments were examined. Theendogenous content of 1-aminocyclopropane- 1-carboxylic acid(ACC), an immediate precursor of ethylene, increased correspondingto the rate of ethylene production. Benzyladenine (BA), whichis a synergistic stimulator of auxin-induced ethylene production,increased the ACC content parallel to the rate of ethylene productionin the presence of IAA, but failed to increase the ACC contentin the absence of IAA while ethylene production was significantlystimulated by BA. Abscisic acid (ABA) inhibited the formationof ACC. The ACC synthase activity in the tissue was increasedby IAA, and the increase was further promoted by the presenceof BA. Cycloheximide severely inhibited the development of auxin-inducedACC synthase. The enzymatic properties of mung bean ACC synthasewere similar to those of the tomato fruit enzyme. Aminoethoxyvinylglycine(AVG) and aminooxyacetic acid, which inhibit the ACC synthasereaction, stimulated the development of ACC synthase. The regulatorymechanisms of the growth regulators are discussed in relationto ACC formation. (Received December 3, 1980; Accepted January 22, 1981)  相似文献   

20.
Chi GL  Pua EC  Goh CJ 《Plant physiology》1991,96(1):178-183
The promotive effect of AgNO3 and aminoethoxyvinylglycine (AVG) on in vitro shoot regeneration from cotyledons of Brassica campestris ssp. pekinensis in relation to endogenous 1-amino-cyclopropane-1-carboxylic acid (ACC) synthase, ACC, and ethylene production was investigated. AgNO3 enhanced ACC synthase activity and ACC accumulation, which reached a maximum after 3 to 7 days of culture. ACC accumulation was concomitant with increased emanation of ethylene which peaked after 14 days. In contrast, AVG was inhibitory to endogenous ACC synthase activity and reduced ACC and ethylene production. The promotive effect of AVG on shoot regeneration was reversed by 2-chloroethylphosphonic acid at 50 micromolar or higher concentrations, whereas explants grown on AgNO3 medium were less affected by 2-chloroethylphosphonic acid. The distinctive effect of AgNO3 and AVG on endogenous ACC synthase, ACC, and ethylene production and its possible mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号