首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The influence of clomiphene citrate on follicle-stimulating-hormone (FSH) and estradiol-induced growth of ovarian follicles and oviducts in the lizard A. carolinensis was studies. In Experiment 1 lizards received 14 daily injections of either saline, clomiphene (1, 10 or 20 mcg), or FSH (1 or 10 mcg) or combined clomiphene-FSH treatment. In Experiment 2, adult lizards with hypertrophied, vitellogenic ovaries, and enlarged oviducts, weres adenohypophysectomized and treated with a daily dose of .05 ml of either saline, saline plus 5 mcg clomiphene, saline plus 10 mcg FSH, saline plus 10 mcg estradiol-17beta, or FSH plus clomiphene or estradiol plus clomiphene. FSH increased follicle size in previtellogenic ovaries. Injection of 1 mcg clomiphene reduces the effects of FSH. 20 mcg clomiphene given alone stimulated the growth of larger follicles. Clomiphene blocked FSH-induced appearance or maintenance of large (less than 2.0 mm) vitellogenic follicles. It blocked FSH gains in oviductal weight and well as stimulated growth of small previtellic follicles. Estradiol-induced follicular and oviductal growth was uneffected by clomiphene. While low doses of clomiphene are antiestrogenic they are unable to combat the effects of high dose estradiol.  相似文献   

2.
The aim of this article was to evaluate the physiological significance of tumor necrosis factor-alpha (TNF-alpha) in seasonal accumulation of adipose tissue, hyperinsulinemia, and anovulation in Scotophilus heathi. The result showed seasonal variations in the circulating TNF-alpha level. A higher level of circulating TNF-alpha was observed during quiescence and recrudescence, whereas a lower level of TNF-alpha was observed during winter dormancy and the preovulatory period. An increased circulating TNF-alpha level coincided closely with accumulation of adipose tissue and hyperinsulinemia. Immunocytochemical localization of TNF-alpha in the ovary showed immunoreactivity mainly in the oocytes and theca-interstitial cells. The oocytes of small and medium-sized follicles showed strong TNF-alpha immunostaining, whereas weak immunoreactivity was observed in the large antral follicles. The atretic follicles showed mild TNF-alpha immunostaining. TNF-alpha immunoreactivity in the ovary was slightly higher during the quiescence and preovulatory periods compared with the periods of recrudescence and winter dormancy. TNF-alpha alone significantly increased androstenedione and estradiol production by the ovary in vitro but did not augment the luteinizing hormone (LH)-induced androstenedione production. However, TNF-alpha did augment LH-induced estradiol production. The results of this study suggest the involvement of TNF-alpha in the interaction among adipose tissue accumulation, insulin resistance, and ovarian activity in S. heathi.  相似文献   

3.
Abdominal fat body mass of Calotes versicolor showed annual changes that were universal related to the changes in ovarian somatic (GSI) and hepatosomatic (HSI) indices. Fat bodies were absent in late breeding phase (June-August). Thirty day fatectomy (FBX) during prebreeding phase significantly reduced GSI, HSI, and total number of extrastromal follicles; also, recruitment of vitellogenic follicles was arrested and ateretic follicles increased. The FBX during postbreeding phase had no such effect, whereas in 30 day ovariectomised (OvX) lizards in prebreeding phase fat body mass significantly increased but HSI decreased. However, in lizards in prebreeding phase, E2 caused a significant decrease in fat body mass and an increase in HSI, while during the postbreeding phase there was a significant increase in HSI but the fat bodies were not affected. The above findings suggest that the development of the first clutch of vitellogenic follicles in the lizard utilises lipids stored in the fat bodies and that the growth of the subsequent clutches of vitellogenic follicles is met through the intake of food, which is abundant in the latter part of the breeding phase. The fat bodies are not needed for the growth of previtellogenic follicles. The fact that lipolytic action of E2 occurs only during the breeding phase suggests that responsiveness of the fat bodies to the steroid is related to the reproductive phase and that during postbreeding phase of the lizard they become refractory to E2.  相似文献   

4.
In cattle and other species in which the pool of resting, primordial follicles is formed during fetal life, little is known about the regulation of the early stages of ovarian follicular development. We used histological morphometry and a combination of observations in vivo and experiments in vitro to study the timing and regulation of follicle formation and the acquisition of the capacity of primordial follicles to initiate growth in cattle. In vivo, primordial, primary, and secondary follicles were first observed around Days 90, 140, and 210 of gestation, respectively. The long interval between the first appearance of primordial and primary follicles suggests that primordial follicles are not capable of activating when they are first formed, or they are inhibited from activating. This hypothesis was confirmed by the finding that most primordial follicles in pieces of ovarian cortex obtained from fetal ovaries older than 140 days activated (i.e., initiated growth) after 2 days in vitro, whereas follicles in cortical pieces from 90- to 140-day-old fetal ovaries did not. We tested the hypothesis that the oocytes of newly formed primordial follicles are not in meiotic arrest and found that before Day 141, most oocytes ( approximately 73%) were in prediplotene stages of prophase I, whereas after Day 140, the majority of oocytes ( approximately 85%) had arrested at the diplotene stage. This observation was further confirmed by the finding that levels of mRNA for YBX2, a protein associated with meiotic arrest, were 2.3 times higher in ovarian cortical pieces isolated after versus before Day 141. Primordial follicles in cortical pieces from 90- to 140-day-old fetal ovaries did activate during a longer, 10-day culture, but activation could be inhibited by adding estradiol or progesterone, but not dihydrotestosterone (all at 10(-6) M). Fetal ovaries secreted estradiol in vitro, and secretion by ovaries from 83 to 140-day-old fetuses declined precipitously ( approximately 30-fold) with age, consistent with the hypothesis that estradiol inhibits activation of newly formed primordial follicles in vivo. In summary, the results show that newly formed primordial follicles do not activate in vivo or within 2 days in vitro and that capacity to activate is correlated with achievement of meiotic arrest by the oocyte and can be inhibited by estradiol, which fetal ovaries actively produce around the time of follicle formation.  相似文献   

5.
Although it is well established that both follicular assembly and the initiation of follicle growth in the mammalian ovary occur independently of pituitary hormone support, the factors controlling these processes remain poorly understood. We now report that neurotrophins (NTs) signaling via TrkB receptors are required for the growth of newly formed follicles. Both neurotrophin-4/5 (NT-4) and brain-derived neurotrophic factor (BDNF), the preferred TrkB ligands, are expressed in the infantile mouse ovary. Initially, they are present in oocytes, but this site of expression switches to granulosa cells after the newly assembled primordial follicles develop into growing primary follicles. Full-length kinase domain-containing TrkB receptors are expressed at low and seemingly unchanging levels in the oocytes and granulosa cells of both primordial and growing follicles. In contrast, a truncated TrkB isoform lacking the intracellular domain of the receptor is selectively expressed in oocytes, where it is targeted to the cell membrane as primary follicles initiate growth. Using gene-targeted mice lacking all TrkB isoforms, we show that the ovaries of these mice or those lacking both NT-4 and BDNF suffer a stage-selective deficiency in early follicular development that compromises the ability of follicles to grow beyond the primary stage. Proliferation of granulosa cells-required for this transition-and expression of FSH receptors (FSHR), which reflects the degree of biochemical differentiation of growing follicles, are reduced in trkB-null mice. Ovaries from these animals grafted under the kidney capsule of wild-type mice fail to sustain follicular growth and show a striking loss of follicular organization, preceded by massive oocyte death. These results indicate that TrkB receptors are required for the early growth of ovarian follicles and that they exert this function by primarily supporting oocyte development as well as providing granulosa cells with a proliferative signal that requires oocyte-somatic cell bidirectional communication. The predominance of truncated TrkB receptors in oocytes and their developmental pattern of subcellular expression suggest that a significant number of NT-4/BDNF actions in the developing mammalian ovary are mediated by these receptors.  相似文献   

6.
Administration (ip) of FSH (10 IU/0.1 ml distilled water (dw)/lizard/alternate days/30 days) to adult male lizards, Mabuya carinata, during the early recrudescence phase of the reproductive cycle caused activation of spermatogenic and steroidogenic activity of the testis, as shown by a significant increase in mean number of spermatogonia, primary spermatocytes and spermatids, and serum levels of testosterone, as compared to initial controls. In addition, there were abundant spermatozoa in the lumen of the seminiferous tubules. Interestingly, administration of a similar dosage of FSH to lizards exposed to stressors (handling, chasing, and noise randomly applied, five times a day for 30 days) resulted in a significant increase in mean number of spermatogonia and primary spermatocytes over initial control values, whereas the number of secondary spermatocytes and spermatids and serum levels of testosterone did not significantly differ from those of initial controls, and were significantly lower than FSH treated normal lizards. Further, spermatozoa were infrequently found in the seminiferous tubules of these lizards. Treatment controls (receiving 0.1 ml dw/lizard/alternate days for 30 days) did not show significant variation in mean number of spermatogonia, spermatocytes and spermatids, and serum levels of testosterone from initial controls. Another group of lizards was exposed to stressors and did not receive FSH. These lizards showed a significant decrease in mean number of secondary spermatocytes compared to treatment controls and all other parameters did not significantly differ from those of both control groups. The results reveal that gonadotrophin-induced spermatogonial proliferation occurs under stressful conditions, whereas progress of spermatogenesis beyond primary spermatocyte stage is impaired due to inhibition (under stress) of gonadotrophin induced steroidogenic activity in M. carinata.  相似文献   

7.
In mammals, gonadal functions are regulated by two pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), that interact with gonadal membrane receptors to activate adenylate cyclase. In comparison to mammalian systems, in squamate reptiles a reduced amount of information exists on gonadotropins and their related receptors. This study is aimed at clarifying if, in the lizard Podarcis sicula, the ovarian sensitivity to FSH is correlated to the reproductive cycle and to the expression of membrane receptors involved in the hormone recognition. The results demonstrate that the ovarian adenylate cyclase responsiveness to FSH parallels ovarian functions, being maximal during the ovulatory period. The ovarian sensitivity to FSH is also related to oocyte growth and vitellogenesis. Northern blot analyses reveal that the FSH receptor mRNA is maximally expressed in vitellogenic oocytes during the reproductive period. These results suggest that, in lizard ovary, hormone activation of adenylate cyclase is mediated by de novo synthesis of receptors specifically involved in FSH recognition. In lizards treated in vivo with FSH during the pre-ovulatory period, adenylate cyclase becomes refractory to further FSH stimulation 2 hr after treatment, but sensitivity to the hormone is restored after 2 weeks. Nevertheless, while the restored level of activity never exceeds that observed during the nonreproductive period, the expression level of FSH receptor mRNAs is significantly enhanced in these animals. These results suggest that in lizard the processes that regulate ovarian growth, vitellogenesis, and ovulation are controlled by a complex network of signals including gonadotropin, FSH receptor expression, and adenylate cyclase.  相似文献   

8.
Picton HM 《Theriogenology》2001,55(6):1193-1210
Investigations of primordial follicle formation and growth are fundamental to our understanding of female gamete production. In all mammalian females the full complement of oocytes is established during fetal development. This store of primordial follicles is not renewable and serves the entire reproductive life span of the adult. The correct programming of fetal ovarian development and the number of primordial follicles formed will therefore limit the fecundity of the ovary. Primordial follicles are characterized by the presence of a single oocyte surrounded by a varying number of pregranulosa cells. The relatively small size, undifferentiated status and large numbers of primordial follicles make them prime candidates for use in basic and applied research in animal production, gene transfer and cloning. Furthermore, the development of cell culture systems that use primordial follicles as a source of oocytes for in vitro growth and maturation will enable us to maximize the potential of high genetic merit females and to shorten generation intervals. Despite these possibilities, primordial follicles are the least understood of all stages of follicle development. The factor(s) responsible for maintaining the primordial pool or, conversely, for activating primordial follicle growth remain elusive.  相似文献   

9.
Cortisol is the principal glucocorticoid released due to various forms of environmental as well as aquacultural stressors in fish. The aim of the present investigation was to determine cortisol‐induced alterations along the luteinizing hormone (LH)‐secreting cells–ovary axis in the tilapia Oreochromis mossambicus. Administration of cortisol to stripped O. mossambicus for a period of 22 days during the ovarian cycle caused significantly higher number of follicles with chromatin nucleoli (stage I) compared to those of initial controls and controls. Whereas the number of follicles at perinucleolar (stage II) and vitellogenic (stage IV) stages did not differ significantly between controls and cortisol‐treated fish, the number of follicles at cortical alveolar stage (stage III) was significantly lower in cortisol‐treated fish than in controls. While the stage V follicles (maturation stage) were absent in initial controls, their presence in controls was concomitant with intensely labelled LH‐secreting cells in the proximal pars distalis (PPD) region of the pituitary gland during prespawning phase. However, cortisol‐treatment resulted in complete absence of stage V follicles associated with weakly immunoreactive LH‐content in the PPD region of the pituitary gland during prespawning phase. These results suggest that chronic cortisol‐ treatment causes suppression of LH‐secreting cells activity and blocks progression of vitellogenic follicular development process in O. mossambicus.  相似文献   

10.
The menstrual cycle is now thought to be mainly determined by the ovary itself, which sends various signals to the pituitary and the hypothalamus. The hypothalamus is an autonomous pacemaker, with a pulse frequency that is modulated by ovarian signals; in turn, it is indispensable to ovarian function. In women, the ovarian cycle produces a single mature oocyte each month from puberty to menopause. This follicle is rescued from atresia, the genetically controlled ovarian apoptosis (or "programmed cell death"), involving 99.9% of the follicles. Follicular growth and maturation are mostly independent of gonadotropins from the stage of primordial to antral follicles. A complete intraovarian paracrine system is implied in this gonadotropin-independent follicular growth and in the modulation of the action of gonadotropins in the ovary. Follicle-stimulating hormone (FSH) allows the rescue of a minority of follicles from atresia and is indispensable only for the final maturation of the preovulatory follicle during the follicular phase of the cycle. Luteinizing hormone (LH) is responsible for the final growth of the dominant follicle in the late follicular phase. the induction of ovulation during the LH peak, and the survival of the corpus luteum during the luteal phase. The cyclical variations of gonadotropins are under the control of ovarian steroids (estradiol and progesterone) and peptides (inhibins). The cycle length is determined by the duration of terminal follicular growth and by the fixed life span of the corpus luteum. The ovarian cycle can be monitored as well at the level of target tissues of steroids, such as the endometrium. In fact, the endometrial maturation is synchronized to follicular development, and this synchronization is indispensable for successful implantation of the embryo. The improving knowledge of follicular and endometrial physiology will allow the development of new treatments of infertility, the design of new contraceptive techniques, and a better tolerance of treatments using sex steroids.  相似文献   

11.
The study was aimed at understanding the process of reproduction and the changes happening in the ovary of Portunus pelagicus during maturation, which would be useful for its broodstock development for hatchery purposes. For that, tissue samples from different regions of the ovary at various stages of maturation were subjected to light and electron microscopy, and based on the changes revealed and the differences in ovarian morphology, the ovary was divided into five stages such as immature (previtellogenic oocytes), early maturing (early vitellogenic oocytes), late maturing (late vitellogenic oocytes), mature (vitellogenic oocytes), and spent (resorbing oocytes). The ovarian wall comprised of an outermost thin pavement epithelium, a middle layer of connective tissue, and an innermost layer of germinal epithelium. The oocytes matured as they moved from the centrally placed germinal zone toward the ovarian wall. The peripheral arrangement of nucleolar materials and the high incidence of cell organelles during the initial stages indicated vitellogenesis I. Movement of follicle cells toward oocytes in the early maturing stage and low incidence of mitochondria and endoplasmic reticulum in the ooplasm during late vitellogenic stage marked the commencement and end of vitellogenesis II, respectively. Yolk granules at various stages of development were seen in the ooplasm from late vitellogenic stage onwards. The spent ovary had an area with resorbing oocytes and empty follicle cells denoting the end of one reproductive cycle and another area with oogonial cells and previtellogenic oocytes indicating the beginning of the next.  相似文献   

12.
Follicular development and other ovarian functions are regulated by growth factors that can be affected by exogenous agents. Methoxychlor (MXC) is an organochloride pesticide that causes female infertility. We investigated how MXC affects the distribution of developing ovarian follicles in adult rats after treatment between embryonic day (E) 18 and postnatal day (PND) 7. We also measured insulin-like growth factor-I (IGF-I) and its receptor, IGF-IR, expressions in ovarian follicles and investigated whether MXC changed the levels of IGF-I and IGF-IR in the ovary. Using immunohistochemical (IHC) staining, we detected IGF-I expression in oocytes and granulosa cells of the follicles, luteal cells, interstitial cells, theca externa and theca interna, and the smooth muscle of ovarian vessels. IGF-IR was co-localized with IGF-I in the ovary except for the theca externa. IGF-I expression was decreased in granulosa cells of preantral and antral follicles after treatment with MXC compared to granulosa cells of preantral and antral follicles of the control group. We also observed that oocytes of secondary follicles and granulosa cells of secondary and preantral follicles of the MXC treated groups showed increased IGF-IR expression compared to oocytes of secondary follicles and granulosa cells of secondary and preantral follicles of the control group. We also detected more secondary and preantral follicles, and fewer primordial and antral follicles after MXC administration compared to controls. Therefore, the IGF signaling pathway may participate in MXC induced ovary dysfunction and female infertility.  相似文献   

13.
The mammalian ovary is composed of ovarian follicles, each follicle consisting of a single oocyte surrounded by somatic granulosa cells, enclosed together within a basement membrane. A finite pool of follicles is laid down during embryonic development, when oocytes in meiotic arrest form a close association with flattened granulosa cells, forming primordial follicles. By or shortly after birth, mammalian ovaries contain their lifetime’s supply of primordial follicles, from which point onwards there is a steady release of follicles into the growing follicular pool.The ovary is particularly amenable to development in vitro, with follicles growing in a highly physiological manner in culture. This work describes the culture of whole neonatal ovaries containing primordial follicles, and the culture of individual ovarian follicles, a method which can support the development of follicles from an immature through to the preovulatory stage, after which their oocytes are able to undergo fertilization in vitro. The work outlined here uses culture systems to determine how the ovary is affected by exposure to external compounds. We also describe a co-culture system, which allows investigation of the interactions that occur between growing follicles and the non-growing pool of primordial follicles.  相似文献   

14.
15.
16.
The growth and development of follicles within the ovary are highly dependent on autocrine and paracrine signaling involving growth factors from granulosa cells, theca cells, stromal interstitial cells, and the oocytes. The growth factor bone morphogenetic protein-4 (BMP-4) and its receptor (BMPR-IB) have been detected in ovaries, and a mutation in BMPR-IB has been associated with abnormal ovulation rate. The objective of the current study was to examine the role that BMP-4 plays in the early stages of primordial follicle development. Ovaries from 4-day-old rats were placed into a whole-ovary organ culture system for 2 wk to investigate the effect that treatment with exogenous BMP-4 has on early follicle development. BMP-4-treated ovaries had a significantly higher proportion of developing primary follicles and fewer arrested primordial follicles than did untreated controls. This indicates that BMP-4 promotes primordial follicle development and the primordial-to-primary follicle transition. Ovaries were also treated with neutralizing antibody against BMP-4 to determine effects of removing endogenously produced BMP-4. Interestingly, ovaries treated with BMP-4 antibody were markedly smaller than controls. This was associated with a progressive loss of oocytes and primordial follicles, a progressive increase in cellular apoptosis, and an accompanying loss of normal ovarian tissue morphology over time. Immunocytochemistry localized BMP-4 protein to isolated stromal cell populations, selected stromal cells (i.e., pretheca cells) associated with developing primordial follicles, and the basement membrane of follicles. Ovaries were treated with BMP-4 and RNA collected after organ culture to determine whether BMP-4 signaling affects expression of other growth factors. Kit ligand and basic fibroblast growth factor expression was unchanged, but TGFalpha expression was decreased in whole ovaries. Taken together, these data suggest that BMP-4 plays an important role in promoting the survival and development of primordial follicles in the neonatal ovary.  相似文献   

17.
Factors that control the onset of folliculogenesis are critical to female gamete production, but poorly understood. The aim of the present study was to investigate the effects of FSH and EGF on the activation and growth of goat primordial follicles in vitro. To this end, pieces of goat ovarian cortex were cultured in vitro for 1, 3 or 5 days, at 39 degrees C in an atmosphere containing 5% CO(2), in minimum essential medium supplemented with insulin, transferrin, selenium, pyruvate, glutamine, hypoxanthine, BSA, penicillin, streptomycin and fungizone and with or without FSH (100 ng/ml) and/or EGF (100 ng/ml). At the end of the culture periods, the relative proportions of primordial, intermediate, primary and secondary follicles were calculated and compared with those in non-cultured tissue. In addition, mitotic activity of granulosa cells was studied by immunohistochemistry for proliferating cell nuclear antigen (PCNA). In brief, it was found that goat primordial follicles activate spontaneously during culture in vitro and, while neither FSH nor EGF affected the proportion of primordial follicles that entered the growth phase, both stimulated an increase in oocyte and follicle diameter, especially in intermediate and primary follicles cultured for 5 days. On the other hand, there was no significant effect of culture or either growth factor on the proportion of PCNA-stained growing follicles. Contrary to expectations, neither FSH nor EGF affected follicle viability or integrity during culture, since the percentages of intact follicles did not differ between control, FSH and/or EGF containing medium. In conclusion, this study demonstrated that goat primordial follicles activate spontaneously in vitro, and that both FSH and EGF stimulate an increase in follicle size by promoting oocyte growth.  相似文献   

18.
During May at Woods Hole, female Gasterosteus aculeatus periodically produce clutches of 112±19 eggs with an average diameter of 1·31±0·05 mm. The fish generally have primordial follicles ranging up to 0·56 mm diameter and a clutch of larger follicles undergoing synchronous growth. The size of oocytes within a growing clutch appears to be random within a population, which indicates that recruitment of clutches is not induced by a local environmental event. The largest oocytes within the population of primordial follicles have just begun vitellogenesis but are temporarily arrested. All oocytes within follicles larger than 1·1 mm diameter undergo spontaneous maturation and enlarge to preovulatory size when incubated at 16° C in a simple saline medium. Added deoxycorticosterone can induce similar events in somewhat smaller follicles placed in culture. Thus, in vivo , follicles grow from 0·56 to 1·1 mm diameter by vitellogenesis, and further enlargement is achieved by hydration during steroid-induced maturation. Females carrying follicles in maturational stages also have a new clutch of follicles entering vitellogenic growth from the population of primordial follicles. Injection of human chlorionic gonado-tropin causes a recruitment of follicles into vitellogenesis regardless of the stage of follicles within the growing clutch. One interpretation of these results is that when vitellogenic follicles reach a diameter of 1·1 mm a surge of gonadotropin(s) induces the follicle cells to release steroid, which results in oocyte maturation; the same surge also recruits a new clutch of vitellogenic oocytes. Qualitatively similar results were obtained for Apeltes quadracus ; thus the recruitment phenomenon observed for G. aculeatus may be a general feature among sticklebacks.  相似文献   

19.
A single injection of estradiol valerate (EV) to 14-day-old rats (when the ovarian follicle population has been already established) disrupts cyclicity, increases the activity of key enzymes of androgen biosynthesis, and develops polycystic ovary by a causally related increase in ovarian noradrenaline (NA). The current study examined an early window of ovarian development to look for a specific stage of development at which estradiol can induce such changes in sympathetic activity and follicular development. A single dose of EV applied to rats before the first 12 h of life rapidly increases (after 24 h) the ovarian expression of nerve growth factor (Ngfb) and p75 low-affinity neurotrophic receptor (Ngfr) mRNAs. When adults, rats presented early vaginal opening, disrupted cyclicity, appearance of follicular cyst, absence of corpus luteum, and infertility. Total follicles decreased, mainly due to a reduced number of primordial follicles, suggesting that estradiol acts in the first stages of folliculogenesis, when primordial follicles are organizing. These changes paralleled a 6-fold increase in NA concentration. No changes in NA content were found in the celiac ganglia, suggesting a local, non-centrally mediated effect of estradiol. Surgical section of the superior ovarian nerve (the main source of sympathetic nerves to the ovary) to rats neonatally treated with EV decreased intraovarian NA, delayed vaginal opening, and blocked the development of follicular cyst and that of preovulatory follicles. Therefore, we can conclude that early exposure to estradiol permanently modifies ovarian sympathetic activity and causes profound changes in follicular development, leading to the polycystic ovary condition.  相似文献   

20.
Ogielska, M., Rozenblut, B., Augustyńska, R., Kotusz, A. 2010. Degeneration of germ line cells in amphibian ovary. —Acta Zoologica (Stockholm) 91 : 319–327 We studied the morphology of degenerating ovarian follicles in juvenile and adult frogs Rana temporaria, Rana lessonae and Rana ridibunda. Degeneration of primordial germ cells was never observed and was extremely rare in oogonia and early oocytes in a cyst phase in juveniles. Previtellogenic oocytes were rarely affected. Three main types of atresia were identified. In type I (subdivided into stages A–D), vitellogenic oocytes are digested by proliferating follicle cells that hypertrophy and become phagocytic. A – germinal vesicle shrinks, nucleoli fuse, oocyte envelope interrupts, and follicular cells hypertrophy; B – follicular cells multiply and invade the oocyte; C – entire vesicle is filled by phagocytic cells; D – degenerating phagocytes accumulate black pigment. Type II is rare and resembles breakdown of follicles and release of ooplasm. In type III, observed in previtellogenic and early vitellogenic oocytes, ooplasm and germinal vesicle shrink, follicle cells do not invade the vesicle, and condensed ooplasm becomes fragmented. The residual oogonia in adult ovaries (germ patches) multiply, but soon degenerate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号