首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Numts are fragments of mitochondrial DNA (mtDNA) that have been translocated to the nucleus, where they can persist while their mitochondrial counterparts continue to rapidly evolve. Thus, numts represent 'molecular fossils' useful for comparison with mitochondrial variation, and are particularly suited for studies of the fast-evolving hypervariable segment of the mitochondrial control region (HV1). Here we used information from numts found in western gorillas (Gorilla gorilla) and eastern gorillas (Gorilla beringei) to estimate that these two species diverged about 1.3 million years ago (Ma), an estimate similar to recent calculations for the divergence of chimpanzee and bonobo. We also describe the sequence of a gorilla numt still possessing a segment lost from all contemporary gorilla mtDNAs. In contrast to that sequence, many numts of the HV1 are highly similar to authentic mitochondrial organellar sequences, making it difficult to determine whether purported mitochondrial sequences truly derive from that genome. We used all available organellar HV1 and corresponding numt sequences from gorillas in a phylogenetic analysis aimed at distinguishing these two types of sequences. Numts were found in several clades in the tree. This, in combination with the fact that only a limited amount of the extant variation in gorillas has been sampled, suggests that categorization of new sequences by the indirect means of phylogenetic comparison would be prone to uncertainty. We conclude that for taxa such as gorillas that contain numerous numts, direct approaches to the authentication of HV1 sequences, such as amplification strategies relying upon the circularity of the mtDNA molecule, remain necessary.  相似文献   

2.
Analysis of mitochondrial DNA sequence variation has been used extensively to study the evolutionary relationships of individuals and populations, both within and across species. So ubiquitous and easily acquired are mtDNA data that it has been suggested that such data could serve as a taxonomic 'barcode' for an objective species classification scheme. However, there are technical pitfalls associated with the acquisition of mtDNA data. One problem is the presence of translocated pieces of mtDNA in the nuclear genome of many taxa that may be mistaken for authentic organellar mtDNA. We assessed the extent to which such 'numt' sequences may pose an overlooked problem in analyses of mtDNA from humans and apes. Using long-range polymerase chain reaction (PCR), we generated necessarily authentic mtDNA sequences for comparison with sequences obtained using typical methods for a segment of the mtDNA control region in humans, chimpanzees, bonobos, gorillas and orangutans. Results revealed that gorillas are notable for having such a variety of numt sequences bearing high similarity to authentic mtDNA that any analysis of mtDNA using standard approaches is rendered impossible. Studies on humans, chimpanzees, bonobos or orangutans are apparently less problematic. One implication is that explicit measures need to be taken to authenticate mtDNA sequences in newly studied taxa or when any irregularities arise. Furthermore, some taxa may not be amenable to analysis of mtDNA variation at all.  相似文献   

3.
The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%), yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%), with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In-depth phylogeographic surveys are urgently needed to avoid underestimating tropical diversity, and the use of mtDNA markers can be instrumental in identifying and prioritizing taxa for species discovery.  相似文献   

4.
Macrobrachium olfersii is an amphidromous freshwater prawn, widespread along the eastern coasts of the Americas. This species shows great morphological modifications during ontogenesis, and several studies have verified the existence of a wide intraspecific variation. Because of this condition, the species is often misidentified, and several synonyms have been documented. To elucidate these aspects, individuals of M. olfersii from different populations along its range of distribution were investigated. The taxonomic limit was established, and the degree of genetic variability of this species was described. We extracted DNA from 53 specimens of M. olfersii, M. americanum, M. digueti and M. faustinum, which resulted in 84 new sequences (22 of 16S mtDNA, 45 of Cythocrome Oxidase I (COI) mtDNA, and 17 of Histone (H3) nDNA). Sequences of three genes (single and concatenated) from these species were used in the Maximum Likelihood and Bayesian Inference phylogenetic analyses and COI sequences from M. olfersii were used in population analysis. The genetic variation was evaluated through the alignment of 554 bp from the 16S, 638 bp from the COI, and 338 bp from the H3. The rates of genetic divergence among populations were lower at the intraspecific level. This was confirmed by the haplotype net, which showed a continuous gene flow among populations. Although a wide distribution and high morphological intraspecific variation often suggest the existence of more than one species, genetic similarity of Caribbean and Brazilian populations of M. olfersii supported them as a single species.  相似文献   

5.
Reconstructions of the human-African great ape phylogeny by using mitochondrial DNA (mtDNA) have been subject to considerable debate. One confounding factor may be the lack of data on intraspecific variation. To test this hypothesis, we examined the effect of intraspecific mtDNA diversity on the phylogenetic reconstruction of another Plio- Pleistocene radiation of higher primates, the fascicularis group of macaque (Macaca) monkey species. Fifteen endonucleases were used to identify 10 haplotypes of 40-47 restriction sites in M. mulatta, which were compared with similar data for the other members of this species group. Interpopulational, intraspecific mtDNA diversity was large (0.5%- 4.5%), and estimates of divergence time and branching order incorporating this variation were substantially different from those based on single representatives of each species. We conclude that intraspecific mtDNA diversity is substantial in at least some primate species. Consequently, without prior information on the extent of genetic diversity within a particular species, intraspecific variation must be assessed and accounted for when reconstructing primate phylogenies. Further, we question the reliability of hominoid mtDNA phylogenies, based as they are on one or a few representatives of each species, in an already depauperate superfamily of primates.   相似文献   

6.
Animal mitochondrial DNA has proved a valuable marker in intraspecific systematic studies. However, if nucleotide sequence heterogeneity exists at the individual level, its usefulness will be much reduced. This study demonstrates that the presence of highly conserved non-coding mitochondrial sequences in the nuclear genome of Schistocerca gregaria greatly impairs the use of mtDNA in population genetic studies. Caution is called for in other organisms; and it seems necessary to check for conserved nuclear copies of mitochondrial sequences before launching into a large scale analysis of populations using mtDNA as a genetic marker. Experimental procedures are suggested for this purpose.  相似文献   

7.
Insertions and deletions (indels) result in sequences of various lengths when homologous gene regions are compared among individuals or species. Although indels are typically phylogenetically informative, occurrence and incorporation of these characters as gaps in intraspecific population genetic data sets are rarely discussed. Moreover, the impact of gaps on estimates of fixation indices, such as F(ST), has not been reviewed. Here, I summarize the occurrence and population genetic signal of indels among 60 published studies that involved alignments of multiple sequences from the mitochondrial DNA (mtDNA) control region of vertebrate taxa. Among 30 studies observing indels, an average of 12% of both variable and parsimony-informative sites were composed of these sites. There was no consistent trend between levels of population differentiation and the number of gap characters in a data block. Across all studies, the average influence on estimates of PhiST was small, explaining only an additional 1.8% of among population variance (range 0.0-8.0%). Studies most likely to observe an increase in PhiST with the inclusion of gap characters were those with < 20 variable sites, but a near equal number of studies with few variable sites did not show an increase. In contrast to studies at interspecific levels, the influence of indels for intraspecific population genetic analyses of control region DNA appears small, dependent upon total number of variable sites in the data block, and related to species-specific characteristics and the spatial distribution of mtDNA lineages that contain indels.  相似文献   

8.
Data accumulated over the past decade from several loci suggest that nonhuman primates have a greater amount of intraspecific genetic variation relative to humans. In phylogenetic reconstructions among primates that are based on genetic data, therefore, it becomes essential to adequately sample the population(s) being analyzed. Inadequate sampling may not only underestimate variation within any given population, but such an underestimate may confound any phylogenetic or population-specific conclusions implied by the data. Here we present inter- and intraspecific data on the molecular evolution of an approximately 1.0 kb intergenic HOXB6 sequence among humans, common chimpanzees, pygmy chimpanzees, gorillas and orangutans. To date, this study represents the most comprehensive investigation of a noncoding nuclear locus among the great apes and humans that examines the nature and amount of intraspecific variation in DNA sequences. Not only do these HOXB6 data continue to support earlier findings that Homo sapiens sapiens has less genetic variation than any great ape species (Ruano et al., 1992; Deinard & Kidd, 1995), but they strongly suggest that a high level of genetic polymorphism existed within the common ancestor of the African ape clade (Homo-Pan-Gorilla). Despite detecting two nucleotide substitutions linking Pan and Homo, we caution against concluding that the HOXB6 data definitively support a Homo-Pan clade to the exclusion of Gorilla. Rather, we believe that taking into consideration the level of genetic polymorphism that is likely to have existed within the common ancestor, the most prudent conclusion that can be made from all available data, including morphological, karyotypic and genetic data, may be that speciation among Homo-Pan-Gorilla is best represented by a "trichotomy".  相似文献   

9.
Abstract.— Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The “three‐times rule” states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three‐times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three‐times rule predicts nuclear gene patterns that can help detect the action of selection. The three‐times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.  相似文献   

10.
Microsatellite fingerprinting in the genus Phaseolus.   总被引:1,自引:0,他引:1  
A Hamann  D Zink  W Nagl 《Génome》1995,38(3):507-515
The genetic variability of the genus Phaseolus was investigated by nonradioactive DNA fingerprinting. The simple repetitive sequences (GATA)4, (GACA)4, (CAC)5, and (CA)8 were used as probes to differentiate 18 species comprised of 90 genotypes. (GATA)4, (CAC)5, and (CA)8 could be detected in the genome of nearly all species, while the (GACA)4 motif occurred only in 13 species. Almost all fragments that hybridized with (GACA)4 also hybridized with (GATA)4. All but two cultivars of Phaseolus vulgaris, P. lunatus, P. acutifolius, and P. polyanthus showed specific banding patterns with (GATA)4. The other repetitive motifs revealed only limited or no intraspecific variation. In P. vulgaris, two group-specific patterns were found with (GATA)4, giving further evidence for a Middle American and an Andean origin of the P. vulgaris genotypes. The high intraspecific pattern variation that was revealed with (GATA)4 in the predominantly self-pollinating species P. vulgaris and P. lunatus can probably be explained by there being at least two primary centres of domestication and, hence, genetic diversification. In cross-pollinating species (e.g., P. coccineus), the observed intraspecific variation was, surprisingly, rather low. The present study shows that DNA fingerprinting with microsatellites successfully distinguishes among gene pools, cultivars, and, in some cases, among individuals.  相似文献   

11.
There is growing interest in broad‐scale biodiversity assessments that can serve as benchmarks for identifying ecological change. Genetic tools have been used for such assessments for decades, but spatial sampling considerations have largely been ignored. Here, we demonstrate how intensive sampling efforts across a large geographical scale can influence identification of taxonomic units. We used sequences of mtDNA cytochrome c oxidase subunit 1 and cytochrome b, analysed with maximum parsimony networks, maximum‐likelihood trees and genetic distance thresholds, as indicators of biodiversity and species identity among the taxonomically challenging fishes of the genus Cottus in the northern Rocky Mountains, USA. Analyses of concatenated sequences from fish collected in all major watersheds of this area revealed eight groups with species‐level differences that were also geographically circumscribed. Only two of these groups, however, were assigned to recognized species, and these two assignments resulted in intraspecific genetic variation (>2.0%) regarded as atypical for individual species. An incomplete inventory of individuals from throughout the geographical ranges of many species represented in public databases, as well as sample misidentification and a poorly developed taxonomy, may have hampered species assignment and discovery. We suspect that genetic assessments based on spatially robust sampling designs will reveal previously unrecognized biodiversity in many other taxa.  相似文献   

12.
We surveyed mitochondrial DNA (mtDNA) sequence variation in short-horned lizards (Phrynosoma douglasi) from throughout western North America and used these data to estimate an intraspecific phylogeny and to assess biogeographic scenarios underlying the geographic structure of lineages in this species. We sequenced 783 base pairs from 38 populations of P. douglasi and three putative outgroups (P. ditmarsi, P. orbiculare, P. platyrhinos). We detected high levels of nucleotide variation among populations and a spatial distribution of mtDNA lineages compatible with major geographic regions. The phylogenetic hypotheses best supported by the data suggest that P. douglasi, as currently described, is paraphyletic with respect to P. ditmarsi. Populations of P. douglasi from the Pacific Northwest (ID, CA, OR, WA) form a monophyletic group that is sister to the subsequent radiation of P. ditmarsi and other P. douglasi clades. These results suggest that divergences within this widespread species are fairly old. We focused on the genetic structure of populations of P. douglasi from a geographic perspective and interpreted the intraspecific phylogeny in light of geologic and climatic changes in western North America during the last 20 million years. The generally high levels of genetic variation found in these population comparisons are in accord with high levels of morphological variation in this species group; however, only in the Pacific Northwest region is there spatial congruence between these phylogenetic results and subspecific ranges based on previous morphological studies. We compared the evolutionary units delineated in this study with previously described subspecies of P. douglasi and evaluated the support (from morphology and mtDNA) for each population lineage in the phylogeny and the implications for the taxonomy of this group.  相似文献   

13.
Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.  相似文献   

14.
The control region (D-loop) of mitochondrial DNA (mtDNA) was amplified and sequenced for eight samples of the rhinogobies Rhinogobius maculafasciatus and R. giurinus from Taiwan and southern China. The control regions of both species are of 841–842 bp; the length of these sequences being the most compact among all known sequences in teleost fishes. Three conserved sequence blocks (CSB) were observed. The full D-loop and tRNA Phe gene sequences were determined and compared with other fishes. The interspecific sequence divergence between the two species is 11.3–11.7%; and the intraspecific variation in R. guirinus 0.8–1.8%. Results suggest that the control region of Rhinogobius is informative for phylogenetic reconstruction at both intraspecific and interspecific levels in this gobiid genus.  相似文献   

15.
Hart MW  Sunday J 《Biology letters》2007,3(5):509-512
The generality of operational species definitions is limited by problematic definitions of between-species divergence. A recent phylogenetic species concept based on a simple objective measure of statistically significant genetic differentiation uses between-species application of statistical parsimony networks that are typically used for population genetic analysis within species. Here we review recent phylogeographic studies and reanalyse several mtDNA barcoding studies using this method. We found that (i) alignments of DNA sequences typically fall apart into a separate subnetwork for each Linnean species (but with a higher rate of true positives for mtDNA data) and (ii) DNA sequences from single species typically stick together in a single haplotype network. Departures from these patterns are usually consistent with hybridization or cryptic species diversity.  相似文献   

16.
Here we show that multiple DNA sequences, similar to the mitochondrial cytochrome oxidase I (COI) gene, occur within single individuals in at least 10 species of the snapping shrimp genus Alpheus. Cloning of amplified products revealed the presence of copies that differed in length and (more frequently) in base substitutions. Although multiple copies were amplified in individual shrimp from total genomic DNA (gDNA), only one sequence was amplified from cDNA. These results are best explained by the presence of nonfunctional duplications of a portion of the mtDNA, probably located in the nuclear genome, since transfer into the nuclear gene would render the COI gene nonfunctional due to differences in the nuclear and mitochondrial genetic codes. Analysis of codon variation suggests that there have been 21 independent transfer events in the 10 species examined. Within a single animal, differences between the sequences of these pseudogenes ranged from 0.2% to 20.6%, and those between the real mtDNA and pseudogene sequences ranged from 0.2% to 18.8% (uncorrected). The large number of integration events and the large range of divergences between pseudogenes and mtDNA sequences suggest that genetic material has been repeatedly transferred from the mtDNA to the nuclear genome of snapping shrimp. Unrecognized pseudogenes in phylogenetic or population studies may result in spurious results, although previous estimates of rates of molecular evolution based on Alpheus sister taxa separated by the Isthmus of Panama appear to remain valid. Especially worrisome for researchers are those pseudogenes that are not obviously recognizable as such. An effective solution may be to amplify transcribed copies of protein-coding mitochondrial genes from cDNA rather than using genomic DNA.  相似文献   

17.
Bryde’s whales (Balaenoptera brydei) differ from other typical baleen whale species because they are restricted to tropical and warm temperate waters in major oceans, and frequent trans-equatorial movement has been suggested for the species. We tested this hypothesis by analyzing genetic variation at 17 microsatellite loci (N = 508) and 299 bp of mitochondrial DNA (mtDNA) control region sequences (N = 472) in individuals obtained from the western North Pacific, South Pacific, and eastern Indian Ocean. Combined use of microsatellite and mtDNA markers allowed us to distinguish between contemporary gene flow and ancestral polymorphism and to describe sex-specific philopatry. A high level of genetic diversity was found within the samples. Both nuclear and mtDNA markers displayed similar population structure, indicating a lack of sex-specific philopatry. Spatial structuring was detected using both frequency-based population parameters and individual-based Bayesian approaches. Whales in the samples from different oceanic regions came from genetically distinct populations with evidence of limited gene flow. We observed low mtDNA sequence divergence among populations and a lack of concordance between geographic and phylogenetic position of mtDNA haplotypes, suggesting recent separation of populations rather than frequent trans-equatorial and inter-oceanic movement. We conclude that current gene flow between Bryde’s whale populations is low and that effective management actions should treat them as separate entities to ensure continued existence of the species.  相似文献   

18.
Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations ( G ST = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers ( G ST = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.  相似文献   

19.
We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (F(ST)= 0.129), introns (Φ(ST)= 0.185), and mtDNA control region (Φ(ST)= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger τ estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.  相似文献   

20.
Parthenogenesis is often thought to constitute an evolutionary dead end as compared with sexual reproduction because genetic recombination is limited or nonexistent in parthenogenetic populations. Yet there are many species to demonstrate that parthenogenesis can initially be extremely successful under certain environmental conditions. In this study we used microsatellite markers to investigate the genetic structure of four natural populations of the neotropical thelytokous parthenogenetic ant Platythyrea punctata. Ten dinucleotide microsatellites were isolated from a partial genomic library of P. punctata. Five of these were found to be polymorphic. In a subsequent analysis of 314 workers taken from 51 colonies, we detected low intraspecific levels of variation at all loci, expressed both in the number of alleles detected and heterozygosities observed. Surprisingly, we found almost no differentiation within populations. Populations rather had a clonal structure, with all individuals from all colonies usually sharing the same genotype. Only in one colony from Puerto Rico did some workers have an additional genotype. This low level of genotypic diversity probably reflects the predominance of thelytoky in P. punctata, together with genetic bottlenecks and founder effects. Cross-species amplification of all 10 loci in 29 ant species comprising four different subfamilies yielded positive amplification products in only a limited number of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号