首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gating currents were recorded at 11 degrees C in cell-attached and inside-out patches from the innervated membrane of Electrophorus main organ electrocytes. With pipette tip diameters of 3-8 microns, maximal charge measured in patches ranged from 0.74 to 7.19 fC. The general features of the gating currents are similar to those from the squid giant axon. The steady-state voltage dependence of the ON gating charge was characterized by an effective valence of 1.3 +/- 0.4 and a midpoint voltage of -56 +/- 7 mV. The charge vs. voltage relation lies approximately 30 mV negative to the channel open probability curve. The ratio of the time constants of the OFF gating current and the Na current was 2.3 at -120 mV and equal at -80 mV. Charge immobilization and Na current inactivation develop with comparable time courses and have very similar voltage dependences. Between 60 and 80% of the charge is temporarily immobilized by inactivation.  相似文献   

2.
Gabapentin and pregabalin are anticonvulsant drugs that are extensively used for the treatment of several neurological and psychiatric disorders. Gabapentinoids (GBPs) are known to have a high affinity binding to α2δ-1 and α2δ-2 auxiliary subunit of specific voltage-gated calcium channels. Despite the confusing effects reported on Ca (2+) currents, most of the studies showed that GBPs reduced release of various neurotransmitters from synapses in several neuronal tissues. We showed that acute in vitro application of pregabalin can reduce in a dose dependent manner synaptic transmission in both neuromuscular junctions and calyx of Held-MNTB excitatory synapses. Furthermore presynaptic Ca (2+) currents treated with pregabalin are reduced in amplitude, do not show inactivation at a clinically relevant low concentration of 100 μM and activate and deactivate faster. These results suggest novel modulatory role of acute pregabalin that might contribute to better understanding its anticonvulsant/analgesic clinical effects.  相似文献   

3.
Excitatory synaptic currents in Purkinje cells   总被引:13,自引:0,他引:13  
The N-methyl-D-aspartate (NMDA) and non-NMDA classes of glutamate receptor combine in many regions of the central nervous system to form a dual-component excitatory postsynaptic current. Non-NMDA receptors mediate synaptic transmission at the resting potential, whereas NMDA receptors contribute during periods of postsynaptic depolarization and play a role in the generation of long-term synaptic potentiation. To investigate the receptor types underlying excitatory synaptic transmission in the cerebellum, we have recorded excitatory postsynaptic currents (EPSCS), by using whole-cell techniques, from Purkinje cells in adult rat cerebellar slices. Stimulation in the white matter or granule-cell layer resulted in an all-or-none synaptic current as a result of climbing-fibre activation. Stimulation in the molecular layer caused a graded synaptic current, as expected for activation of parallel fibres. When the parallel fibres were stimulated twice at an interval of 40 ms, the second EPSC was facilitated; similar paired-pulse stimulation of the climbing fibre resulted in a depression of the second EPSC. Both parallel-fibre and climbing-fibre responses exhibited linear current-voltage relations. At a holding potential of -40 mV or in the nominal absence of Mg2+ these synaptic responses were unaffected by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were blocked by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). NMDA applied to the bath failed to evoke an inward current, whereas aspartate or glutamate induced a substantial current; this current was, however, largely reduced by CNQX, indicating that non-NMDA receptors mediate this response. These results indicate that both types of excitatory input to adult Purkinje cells are mediated exclusively by glutamate receptors of the non-NMDA type, and that these cells entirely lack NMDA receptors.  相似文献   

4.
5.
Outward currents through inward rectifier Kir2.1 channels play crucial roles in controlling the electrical properties of excitable cells. Extracellular monovalent and divalent cations have been shown to reduce outward K+ conductance. In the present study, we examined whether spermine, with four positive charges, also inhibits outward Kir2.1 currents. We found that extracellular spermine inhibits steady-state outward Kir2.1 currents, an effect that increases as the voltage becomes more depolarizing, similar to that observed for intracellular spermine. However, several lines of evidence suggest that extracellular spermine does not inhibit outward currents by entering the cytoplasmic pore. Site-directed mutagenesis studies support that extracellular spermine directly interacts with the extracellular domain. In addition, we found that the voltage-dependent decay of outward Kir2.1 currents was necessary for inhibition by extracellular spermine. Further, a region at or near the selectivity filter and the cytoplasmic pore are involved in the voltage-dependent decay and thus in the inhibition of outward currents by extracellular spermine. Taken together, the data suggest that extracellular spermine bound to the mouth of the extracellular pore may induce an allosteric effect on voltage-dependent decay of outward currents, a process in which a region in the vicinity of the selectivity filter and cytoplasmic pore are involved. This study reveals that the extracellular pore domain, the selectivity filter and the cytoplasmic pore are in communication and this coupling is involved in modulating K+ conduction in the Kir2.1 channel.  相似文献   

6.
The employment of standard CMOS technology to produce semiconductor chips for recording neuronal activity or for its future use to link neurons and transistors under in vivo conditions, suffers from a low signal to noise ratio. Using Aplysia neurons cultured on CMOS floating gate field effect transistors, we report here that minor mechanical pressure applied to restricted neuronal compartment that face the sensing pad induces two independent alterations: (a) increase in the seal resistance formed between the neuron's membrane and the sensing pad, and (b) increase the conductance of the membrane patch that faces the sensing pad. These alterations (from approximately 0.5 to approximately 1.2 MOmega and 75 to approximately 600 nS correspondingly), are sufficient to transform the low capacitive coupling between a neuron and a transistor to Ohmic coupling, which is manifested by semi-intracellular recordings of APs with amplitudes of up to 30 mV. The semi-intracellular recordings could be maintained for hours. As a number of compression and decompression cycles could be applied to a single cell without causing significant alterations in its excitable properties, we conclude that the mechanical damage inflicted to the neurons by local compression are reversible. Based on these observations, we suggest that the application of minimal local pressure or suction forces could be used to transform conventional extracellular field potential recordings into quasi-intracellular recording, and thereby dramatically improve both the signal to noise ratio and the quality of recordings from neurons cultured on CMOS semiconductors chips.  相似文献   

7.
For single channel recordings, the maximum likelihood estimation (MLE) of kinetic rates and conductance is well established. A direct extrapolation of this method to macroscopic currents is computationally prohibitive: it scales as a power of the number of channels. An approximated MLE that ignored the local time correlation of the data has been shown to provide estimates of the kinetic parameters. In this article, an improved approximated MLE that takes into account the local time correlation is proposed. This method estimates the channel kinetics using both the time course and the random fluctuations of the macroscopic current generated by a homogeneous population of ion channels under white noise. It allows arbitrary kinetic models and stimulation protocols. The application of the proposed algorithm to simulated data from a simple three-state model on nonstationary conditions showed reliable estimates of all the kinetic constants, the conductance and the number of channels, and reliable values for the standard error of those estimates. Compared to the previous approximated MLE, it reduces by a factor of 10 the amount of data needed to secure a given accuracy and it can even determine the kinetic rates in macroscopic stationary conditions.  相似文献   

8.
Single-chloride-channel currents were recorded from primary cultured Drosophila neurons by means of the gigaohm-seal patch-clamp technique. Small inward-going current channels were observed in excised inside-out patches with the external face of the membrane exposed to bathing solutions devoid of K+, Na+, and Ca2+. The inward current was affected by changing the anions but not the cations bathing the cytoplasmic face of the patch. Complete replacement of CI? by glutamate eliminated the current. The current was maintained with intracellular solutions containing NO3? in place of CI?. The single-channel conductance was estimated to be 7 ps with CI?, and 11 ps with NO3? at 10°C. Possible functions of this anion-selective channel have been discussed.  相似文献   

9.
In order to identify and understand mechanistically the cortical circuitry of sensory information processing estimates are needed of synaptic input fields that drive neurons. From intracellular in vivo recordings one would like to estimate net synaptic conductance time courses for excitation and inhibition, g(E)(t) and g(I)(t), during time-varying stimulus presentations. However, the intrinsic conductance transients associated with neuronal spiking can confound such estimates, and thereby jeopardize functional interpretations. Here, using a conductance-based pyramidal neuron model we illustrate errors in estimates when the influence of spike-generating conductances are not reduced or avoided. A typical estimation procedure involves approximating the current-voltage relation at each time point during repeated stimuli. The repeated presentations are done in a few sets, each with a different steady bias current. From the trial-averaged smoothed membrane potential one estimates total membrane conductance and then dissects out estimates for g(E)(t) and g(I)(t). Simulations show that estimates obtained during phases without spikes are good but those obtained from phases with spiking should be viewed with skeptism. For the simulations, we consider two different synaptic input scenarios, each corresponding to computational network models of orientation tuning in visual cortex. One input scenario mimics a push-pull arrangement for g(E)(t) and g(I)(t) and idealized as specified smooth time courses. The other is taken directly from a large-scale network simulation of stochastically spiking neurons in a slab of cortex with recurrent excitation and inhibition. For both, we show that spike-generating conductances cause serious errors in the estimates of g(E) and g(I). In some phases for the push-pull examples even the polarity of g(I) is mis-estimated, indicating significant increase when g(I) is actually decreased. Our primary message is to be cautious about forming interpretations based on estimates developed during spiking phases.  相似文献   

10.
11.
The maximum-likelihood technique for the direct estimation of rate constants from the measured patch clamp current is extended to the analysis of multi-channel recordings, including channels with subconductance levels. The algorithm utilizes a simplified approach for the calculation of the matrix exponentials of the probability matrix from the rate constants of the Markov model of the involved channel(s) by making use of the Kronecker sum and product. The extension to multi-channel analysis is tested by the application to simulated data. For these tests, three different channel models were selected: a two-state model, a three-state model with two open states of different conductance, and a three-state model with two closed states. For the simulations, time series of these models were calculated from the related first-order, finite-state, continuous-time Markov processes. Blue background noise was added, and the signals were filtered by a digital filter similar to the anti-aliasing low-pass. The tests showed that the fit algorithm revealed good estimates of the original rate constants from time series of simulated records with up to four independent and identical channels even in the case of signal-to-noise ratios being as low as 2. The number of channels in a record can be determined from the dependence of the likelihood on channel number. For large enough data sets, it takes on a maximum when the assumed channel number is equal to the "true" channel number.  相似文献   

12.
This model study investigates the validity of methods used to interpret linear (laminar) multielectrode recordings. In computer experiments extracellular potentials from a synaptically activated population of about 1,000 pyramidal neurons are calculated using biologically realistic compartmental neuron models combined with electrostatic forward modeling. The somas of the pyramidal neurons are located in a 0.4 mm high and wide columnar cylinder, mimicking a stimulus-evoked layer-5 population in a neocortical column. Current-source density (CSD) analysis of the low-frequency part (<500 Hz) of the calculated potentials (local field potentials, LFP) based on the ‘inverse’ CSD method is, in contrast to the ‘standard’ CSD method, seen to give excellent estimates of the true underlying CSD. The high-frequency part (>750 Hz) of the potentials (multi-unit activity, MUA) is found to scale approximately as the population firing rate to the power 3/4 and to give excellent estimates of the underlying population firing rate for trial-averaged data. The MUA signal is found to decay much more sharply outside the columnar populations than the LFP.  相似文献   

13.
An account is presented of how the molecular basis of synaptic transmission at peripheral and central synapses is elucidated by combining patch clamp and recombinant DNA techniques.Nobel lecture given on December 9, 1991, by Dr B. Sakmann and published inLes Prix Nobel 1991, Printed by Norstedts Tryckeri, Stockholm, Sweden, 1992, republished here with the permission of the Nobel Foundation, the copyright holder.  相似文献   

14.
A field-effect transistor (FET) for recording extracellular signals from electrogenic cells is presented. The so-called floating gate architecture combines a complementary metal oxide semiconductor (CMOS)-type n-channel transistor with an independent sensing area. This concept allows the transistor and sensing area to be optimised separately. The devices are robust and can be reused several times. The noise level of the devices was smaller than of comparable non-metallised gate FETs. In addition to the usual drift of FET devices, we observed a long-term drift that has to be controlled for future long-term measurements. The device performance for extracellular signal recording was tested using embryonic rat cardiac myocytes cultured on fibronectin-coated chips. The extracellular cell signals were recorded before and after the addition of the cardioactive isoproterenol. The signal shapes of the measured action potentials were comparable to the non-metallised gate FETs previously used in similar experiments. The fabrication of the devices involved the process steps of standard CMOS that were necessary to create n-channel transistors. The implementation of a complete CMOS process would facilitate the integration of the logical circuits necessary for signal pre-processing on a chip, which is a prerequisite for a greater number of sensor spots in future layouts.  相似文献   

15.
We investigate the use of extracellular action potential (EAP) recordings for biophysically faithful compartmental models. We ask whether constraining a model to fit the EAP is superior to matching the intracellular action potential (IAP). In agreement with previous studies, we find that the IAP method under-constrains the parameters. As a result, significantly different sets of parameters can have virtually identical IAP’s. In contrast, the EAP method results in a much tighter constraint. We find that the distinguishing characteristics of the waveform—but not its amplitude- resulting from the distribution of active conductances are fairly invariant to changes of electrode position and detailed cellular morphology. Based on these results, we conclude that EAP recordings are an excellent source of data for the purpose of constraining compartmental models. Action Editor: Alain Destexhe  相似文献   

16.
Sodium currents were recorded in cell-attached and inside-out patches from the innervated membrane of Electrophorus electrocytes. Electrocytes from Sachs and main electric organs were prepared as described by Pasquale et al. (1986. J. Membr. Biol. 93:195.). Maximal currents in the Sachs organ, measured with 1-2 microns diameter patch pipettes and at room temperature, were in the range of 20 to 300 pA (27 patches) and were obtained near +10 mV. This range of current corresponds to approximately 70 to 1,300 channels in a patch. Maximal current in main organ cells also occurred near +10 mV and were in the range of 100 to 400 pA. Delayed K current was observed in a few patches. The inactivation phase of the currents during maintained depolarizations appears to be a single-exponential relaxation. The time constant decreases from 1 ms near -55 mV to a minimum of 0.3 ms near 0 mV, and then gradually increases with stronger depolarization. The mean currents are half inactivated near -90 mV with an apparent voltage dependence of e-fold per 6 mV. No apparent differences were observed in the decay time course or steady-state inactivation of the currents in the same patch before and after excision. From ensemble fluctuation analysis the peak open probability was found to be approximately 0.5 at +25 mV and increased only gradually with larger depolarizations. The single channel conductances were approximately 20 pS with 200 mM Na outside and 200 mM K inside, and 40 pS in 400 mM solutions. Reversal potentials in the 200 Na parallel 200 K solutions ranged from +51 to +94 mV in multichannel patches, corresponding to selectivity ratios PNa/PK from 8 to 43. Large differences in reversal potentials were seen even among patches from the same cell. Several controls rule out obvious sources of error in the reversal potential measurements. It is concluded that there is heterogeneity in the selectivity properties of the Na channels.  相似文献   

17.
Gabapentin and pregabalin are anticonvulsant drugs that are extensively used for the treatment of several neurological and psychiatric disorders. Gabapentinoids (GBPs) are known to have a high affinity binding to α2δ-1 and α2δ-2 auxiliary subunit of specific voltage-gated calcium channels. Despite the confusing effects reported on Ca2+ currents, most of the studies showed that GBPs reduced release of various neurotransmitters from synapses in several neuronal tissues. We showed that acute in vitro application of pregabalin can reduce in a dose dependent manner synaptic transmission in both neuromuscular junctions and calyx of Held-MNTB excitatory synapses. Furthermore presynaptic Ca2+ currents treated with pregabalin are reduced in amplitude, do not show inactivation at a clinically relevant low concentration of 100 μM and activate and deactive faster. These results suggest novel modulatory role of acute pregabalin that might contribute to better understanding its anticonvulsant/analgesic clinical effects.  相似文献   

18.
Membrane potentials, input resistances, and electric coupling in the apical parts of N. crassa growing hyphae were recorded with the aid of intracellular microelectrodes. It was revealed that the apical cells were always depolarized by 10 to 30 mV as compared to the adjacent proximal cells. The septal pore maintained an electrical resistance of 4 to 6 M omega. The calculated values of the endogenous electrical current passing through the septal pore varied between 0.5 and 1 nA. Electrical isolation of the apical cells resulted in their depolarization from 120-150 mV to 40-60 mV, characteristics of the membrane potential value of N. crassa adult hyphae with completely blocked electrogenic pumps. A simultaneous increase in the input resistance value from 15-20 M omega to 40-80 M omega was observed. The above data can be explained assuming that H+-ATPase activity was greatly lowered in the apical cells. Thus in the intact hyphae with electrically coupled cells energy is transferred from the proximal hyphal compartments to the apical ones.  相似文献   

19.
Takahashi T 《Cell calcium》2005,37(5):507-511
Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers transmitter release. Direct recording of Ca2+ currents from the calyx of Held nerve terminal revealed that presynaptic VGCCs undergo various modulations via presynaptic G protein-coupled receptors (GPCRs), Ca2+-binding proteins and a developmental switch of their alpha1 subunits. Dynamic changes of presynaptic VGCCs alter synaptic efficacy, thereby contributing to a variety of modulations of the CNS function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号