首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of dense core secretory vesicles in the control of cytosolic-free Ca(2+) concentrations ([Ca(2+)](c)) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2-synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet beta-cells: (a) increases in [Ca(2+)](c) cause a prompt increase in intravesicular-free Ca(2+) concentration ([Ca(2+)]SV), which is mediated by a P-type Ca(2+)-ATPase distinct from the sarco(endo) plasmic reticulum Ca(2+)-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca(2+) pumps; (b) steady state Ca(2+) concentrations are 3-5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca(2+); (c) inositol (1,4,5) trisphosphate has no impact on [Ca(2+)](SV) in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca(2+)](SV). Thus, secretory vesicles represent a dynamic Ca(2+) store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca(2+)-induced Ca(2+) release from vesicles docked at the plasma membrane could participate in triggering exocytosis.  相似文献   

2.
Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significantly reduced in primary skin fibroblasts from a patient with an isolated complex I deficiency. The present work addresses the mechanism(s) underlying this impaired response. Luminometry of fibroblasts from 6 healthy subjects and 14 genetically characterized patients expressing mitochondria targeted luciferase revealed that the Bk-induced increase in [ATP](M) was significantly, but to a variable degree, decreased in 10 patients. The same variation was observed for the increases in mitochondrial [Ca(2+)] ([Ca(2+)](M)), measured with mitochondria targeted aequorin, and cytosolic [Ca(2+)] ([Ca(2+)](C)), measured with fura-2, and for the Ca(2+) content of the endoplasmic reticulum (ER), calculated from the increase in [Ca(2+)](C) evoked by thapsigargin, an inhibitor of the ER Ca(2+) ATPase. Regression analysis revealed that the increase in [ATP](M) was directly proportional to the increases in [Ca(2+)](C) and [Ca(2+)](M) and to the ER Ca(2+) content. Our findings provide evidence that a pathological reduction in ER Ca(2+) content is the direct cause of the impaired Bk-induced increase in [ATP](M) in human complex I deficiency.  相似文献   

3.
Fura-2 antagonises calcium-induced calcium release   总被引:1,自引:0,他引:1  
Calcium-induced calcium release (CICR) from the endoplasmic reticulum (ER) takes place through ryanodine receptors (RyRs) and it is often revealed by an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) induced by caffeine. Using fura-2-loaded cells, we find such an effect in bovine adrenal chromaffin cells, but not in cerebellar granule neurones or in HEK-293 cells. In contrast, a caffeine-induced [Ca(2+)](c) increase was clearly visible with either fluo-3 or cytosolic aequorin. Simultaneous loading with fura-2 prevented the [Ca(2+)](c) increase reported by the other Ca(2+) probes. Caffeine-induced Ca(2+) release was also measured by following changes of [Ca(2+)] inside the ER ([Ca(2+)](ER)) with ER-targeted aequorin in HEK-293 cells. Fura-2 loading did not modify Ca(2+) release from the ER. Thus, fura-2, but not fluo-3, antagonises the generation of the cytosolic Ca(2+) signal induced by activation of RyRs. Cytosolic Ca(2+) buffering and/or acceleration of Ca(2+) diffusion through the cytosol may contribute to these actions. Both effects may interfere with the generation of microdomains of high [Ca(2+)](c) near the ER release channels, which are essential for the propagation of the Ca(2+) wave through the cytosol. In any case, our results caution the use of fura-2 to study CICR.  相似文献   

4.
Whether mitochondrial Ca(2+) transport is rapid enough to respond to changes in cytosolic [Ca(2+)] ([Ca(2+)](c)) which occur during excitation-contraction coupling in the heart is controversial; different results wereobtained with different techniques and different species. In this study mitochondrial [Ca(2+)] ([Ca(2+)](m)) was measured in indo-1/AM-loaded myocytes from rat and guinea-pig hearts where the cytosolic indo-1 had been removed by extended incubation of cells at 37 degrees C ("heat treatment"). The mitochondrial origin of the remaining fluorescence was confirmed by sensitivity of the indo-1 signal to ruthenium red. In resting rat myocytes, [Ca(2+)](m) was lower than [Ca(2+)](c), whereas in guinea-pig cells [Ca(2+)](m) was higher than [Ca(2+)](c). Upon electrical stimulation of cells, no change occurred in [Ca(2+)](m) in rat myocytes. However, in guinea-pig cells mitochondrial Ca(2+) transients were clearly visible with a mean indo-1 ratio amplitude of 0.153 +/- 0.2 (n = 20), compared with 0.306 +/- 0.02 (n = 25), p < 0.001, prior to heat treatment. These observations suggest significant differences in mitochondrial Ca(2+) transport in cardiomyocytes from different species.  相似文献   

5.
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also [Ca(2+)](cyt) lower than the resting [Ca(2+)](cyt) influences store-operated channels. We therefore combined patch clamp and mag fura-2 fluorescence methods to determine simultaneously both I(CRAC) and [Ca(2+)] within Ca(2+) stores of RBL-1 cells ([Ca(2+)](store)). We found that low [Ca(2+)](cyt) in the range of 30-50 nM activates I(CRAC) and Ca(2+) influx spontaneously and independently of global Ca(2+) store depletion, while elevation of [Ca(2+)](cyt) to the resting [Ca(2+)](cyt) (100 nM) resulted in store dependence of I(CRAC) activation. We conclude that spontaneous activation of I(CRAC) by low [Ca(2+)](cyt) could serve as a feedback mechanism keeping the resting [Ca(2+)](cyt) constant.  相似文献   

6.
Calcium signal transmission between ryanodine receptors and mitochondria   总被引:19,自引:0,他引:19  
Control of energy metabolism by increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) may represent a fundamental mechanism to meet the ATP demand imposed by heart contractions, but the machinery underlying propagation of [Ca(2+)] signals from ryanodine receptor Ca(2+) release channels (RyR) to the mitochondria remains elusive. Using permeabilized cardiac (H9c2) cells we investigated the cytosolic [Ca(2+)] ([Ca(2+)](c)) and [Ca(2+)](m) signals elicited by activation of RyR. Caffeine, Ca(2+), and ryanodine evoked [Ca(2+)](c) spikes that often appeared as frequency-modulated [Ca(2+)](c) oscillations in these permeabilized cells. Rapid increases in [Ca(2+)](m) and activation of the Ca(2+)-sensitive mitochondrial dehydrogenases were synchronized to the rising phase of the [Ca(2+)](c) spikes. The RyR-mediated elevations of global [Ca(2+)](c) were in the submicromolar range, but the rate of [Ca(2+)](m) increases was as large as it was in the presence of 30 microm global [Ca(2+)](c). Furthermore, RyR-dependent increases of [Ca(2+)](m) were relatively insensitive to buffering of [Ca(2+)](c) by EGTA. Therefore, RyR-driven rises of [Ca(2+)](m) appear to result from large and rapid increases of perimitochondrial [Ca(2+)]. The falling phase of [Ca(2+)](c) spikes was followed by a rapid decay of [Ca(2+)](m). CGP37157 slowed down relaxation of [Ca(2+)](m) spikes, whereas cyclosporin A had no effect, suggesting that activation of the mitochondrial Ca(2+) exchangers accounts for rapid reversal of the [Ca(2+)](m) response with little contribution from the permeability transition pore. Thus, rapid activation of Ca(2+) uptake sites and Ca(2+) exchangers evoked by RyR-mediated local [Ca(2+)](c) signals allow mitochondria to respond rapidly to single [Ca(2+)](c) spikes in cardiac cells.  相似文献   

7.
Tse A  Lee AK  Tse FW 《Cell calcium》2012,51(3-4):253-259
The secretion of adrenocorticotrophin (ACTH) from corticotropes is a key component in the endocrine response to stress. The resting potential of corticotropes is set by the basal activities of TWIK-related K(+) (TREK)-1 channel. Corticotrophin-releasing hormone (CRH), the major ACTH secretagogue, closes the background TREK-1 channels via the cAMP-dependent pathway, resulting in depolarization and a sustained rise in cytosolic [Ca(2+)] ([Ca(2+)](i)). By contrast, arginine vasopressin and norepinephrine evoke Ca(2+) release from the inositol trisphosphate (IP(3))-sensitive store, resulting in the activation of small conductance Ca(2+)-activated K(+) channels and hyperpolarization. Following [Ca(2+)](i) rise, cytosolic Ca(2+) is taken into the mitochondria via the uniporter. Mitochondrial inhibition slows the decay of the Ca(2+) signal and enhances the depolarization-triggered exocytotic response. Both voltage-gated Ca(2+) channel activation and intracellular Ca(2+) release generate spatial Ca(2+) gradients near the exocytic sites such that the local [Ca(2+)] is ~3-fold higher than the average [Ca(2+)](i). The stimulation of mitochondrial metabolism during the agonist-induced Ca(2+) signal and the robust endocytosis following stimulated exocytosis enable corticotropes to maintain sustained secretion during the diurnal ACTH surge. Arachidonic acid (AA) which is generated during CRH stimulation activates TREK-1 channels and causes hyperpolarization. Thus, corticotropes may regulate ACTH release via an autocrine feedback mechanism.  相似文献   

8.
The mechanisms that enable the heart to rapidly increase ATP supply in line with increased demand have not been fully elucidated. Here we used an adenoviral system to express the photoproteins luciferase and aequorin, targeted to the mitochondria or cytosol of adult cardiomyocytes, to investigate the interrelationship between ATP and Ca(2+) in these compartments. In neither compartment were changes in free [ATP] observed upon increased workload (addition of isoproterenol) in myocytes that were already beating. However, when myocytes were stimulated to beat rapidly from rest, in the presence of isoproterenol, a significant but transient drop in mitochondrial [ATP] ([ATP](m)) occurred (on average to 10% of the initial signal). Corresponding changes in cytosolic [ATP] ([ATP](c)) were much smaller (<5%), indicating that [ATP](c) was effectively buffered in this compartment. Although mitochondrial [Ca(2+)] ([Ca(2+)](m)) is an important regulator of respiratory chain activity and ATP production in other cells, the kinetics of mitochondrial Ca(2+) transport are controversial. Parallel experiments in cells expressing mitochondrial aequorin showed that the drop in [ATP](m) occurred over the same time scale as average [Ca(2+)](m) was increasing. Conversely, in the absence or presence of isoproterenol, clear beat-to-beat peaks in [Ca(2+)](m) were observed at 0.9 or 1.3 mum, respectively, concentrations similar to those observed in the cytosol. These results suggest that mitochondrial Ca(2+) transients occur during the contractile cycle and are translated into a time-averaged increase in mitochondrial ATP production that keeps pace with increased cytosolic demand.  相似文献   

9.
Calcium signal transmission between endoplasmic reticulum (ER) and mitochondria is supported by a local [Ca(2+)] control that operates between IP(3)receptor Ca(2+)release channels (IP(3)R) and mitochondrial Ca(2+)uptake sites, and displays functional similarities to synaptic transmission. Activation of IP(3)R by IP(3)is known to evoke quantal Ca(2+)mobilization that is associated with incremental elevations of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)). Here we report that activation of IP(3)R by adenophostin-A (AP) yields non-quantal Ca(2+)mobilization in mast cells. We also show that the AP-induced continuous Ca(2+)release causes relatively small [Ca(2+)](m)responses, in particular, the sustained phase of Ca(2+)release is not sensed by the mitochondria. Inhibition of ER Ca(2+)pumps by thapsigargin slightly increases IP(3)-induced [Ca(2+)](m)responses, but augments AP-induced [Ca(2+)](m)responses in a large extent. In adherent permeabilized cells exposed to elevated [Ca(2+)], ER Ca(2+)uptake fails to affect global cytosolic [Ca(2+)], but attenuates [Ca(2+)](m)responses. Moreover, almost every mitochondrion exhibits a region very close to ER Ca(2+)pumps visualized by BODIPY-FL-thapsigargin or SERCA antibody. Thus, at the ER-mitochondrial junctions, localized ER Ca(2+)uptake provides a mechanism to attenuate the mitochondrial response during continuous Ca(2+)release through the IP(3)R or during gradual Ca(2+)influx to the junction between ER and mitochondria.  相似文献   

10.
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from 0.5 to 15 mM led to the well-known hyperpolarization of DeltaPsi and ATP-dependent lowering of [Ca(2+)](c). However, as soon as [Ca(2+)](c) rose due to the opening of voltage-dependent Ca(2+) channels, DeltaPsi depolarized and thereafter oscillations in [Ca(2+)](c) were parallel to oscillations in DeltaPsi. A depolarization or oscillations of DeltaPsi cannot be evoked by a substimulatory glucose concentration, but Ca(2+) influx provoked by 30 mM KCl was followed by a depolarization of DeltaPsi. The following feedback loop is suggested: Glucose metabolism via mitochondrial ATP production and closure of K(+)(ATP) channels induces an increase in [Ca(2+)](c). The rise in [Ca(2+)](c) in turn decreases ATP synthesis by depolarizing DeltaPsi, thus transiently terminating Ca(2+) influx.  相似文献   

11.
Han R  Grounds MD  Bakker AJ 《Cell calcium》2006,40(3):299-307
The hypothesis that intracellular Ca(2+) is elevated in dystrophic (mdx) skeletal muscle due to increased Ca(2+) influx is controversial. As the sub-sarcolemmal Ca(2+) ([Ca(2+)](mem)) should be even higher than the global cytosolic Ca(2+) in the presence of increased Ca(2+) influx, we investigated [Ca(2+)](mem) levels in collagenase-isolated adult flexor digitorum brevis (FDB) myofibres and myotubes of mdx and normal mice with the near-membrane Ca(2+) indicator FFP-18. Confocal imaging showed strong localization of FFP-18 to the sarcolemma only. No significant difference in [Ca(2+)](mem) was found in FDB myofibres of normal (77.3+/-3.8 nM, n=68) and mdx (79.3+/-5.6 nM, n=21, p=0.89) mice using FFP-18. Increasing external Ca(2+) to 18 mM did not significantly affect [Ca(2+)](mem) in either the normal or mdx myofibres. In the myotubes, the FFP-18 was non-selectively incorporated, distributing throughout the cytoplasm, and FFP-18-derived [Ca(2+)] values were similar to values obtained with Fura-2. Nevertheless, in the mdx myotubes, the [Ca(2+)] measured with FFP-18 increased linearly to a level approximately 2.75 times that of controls as the time of culture was prolonged. In older mdx myotubes (>or=8 days in culture), 18 mM extracellular Ca(2+) increased the steady state cytosolic [Ca(2+)] to approximately 22 times greater level than controls. This study suggests that the sub-sarcolemmal Ca(2+) homeostasis is well maintained in isolated adult mdx myofibers and also further supports the hypothesis that cytosolic Ca(2+) handling is compromised in mdx myotubes.  相似文献   

12.
The reverse-mode of the Na(+)/Ca(2+)-exchanger (NCX) mediates Ca(2+)-entry in agonist-stimulated vascular smooth muscle (VSM) and plays a central role in salt-sensitive hypertension. We investigated buffering of Ca(2+)-entry by peripheral mitochondria upon NCX reversal in rat aortic smooth muscle cells (RASMC). [Ca(2+)] was measured in mitochondria ([Ca(2+)](MT)) and the sub-plasmalemmal space ([Ca(2+)](subPM)) with targeted aequorins and in the bulk cytosol ([Ca(2+)](i)) with fura-2. Substitution of extracellular Na(+) by N-methyl-d-glucamine transiently increased [Ca(2+)](MT) ( approximately 2microM) and [Ca(2+)](subPM) ( approximately 1.3microM), which then decreased to sustained plateaus. In contrast, Na(+)-substitution caused a delayed and tonic increase in [Ca(2+)](i) (<100nM). Inhibition of Ca(2+)-uptake by the sarcoplasmic reticulum (SR) (30microM cyclopiazonic acid) or mitochondria (2microM FCCP or 2microM ruthenium red) enhanced the elevation of [Ca(2+)](subPM). These treatments also abolished the delay in the [Ca(2+)](i) response to 0Na(+) and increased its amplitude. Extracellular ATP (1mM) caused a peak and plateau in [Ca(2+)](i), and only the plateau was inhibited by KB-R7943 (10microM), a selective blocker of reverse-mode NCX. Evidence for ATP-mediated NCX-reversal was also found in changes in [Na(+)](i). Mitochondria normally exhibited a transient elevation of [Ca(2+)] in response to ATP, but inhibiting the mitochondrial NCX with CGP-37157 (10microM) unmasked an agonist-induced increase in mitochondrial Ca(2+)-flux. This flux was blocked by KB-R7943. In summary, mitochondria and the sarcoplasmic reticulum co-operate to buffer changes in [Ca(2+)](i) due to agonist-induced NCX reversal.  相似文献   

13.
Stimulation of Dictyostelium discoideum with cAMP evokes a change of the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). We analyzed the role of the filling state of Ca(2+) stores for the [Ca(2+)] transient. Parameters tested were the height of the [Ca(2+)](i) elevation and the percentage of responding amoebae. After loading stores with Ca(2+), cAMP induced a [Ca(2+)](i) transient in many cells. Without prior loading, cAMP evoked a [Ca(2+)](i) change in a few cells only. This indicates that the [Ca(2+)](i) elevation is not mediated exclusively by Ca(2+) influx but also by Ca(2+) release from stores. Reducing the Ca(2+) content of the stores by EGTA preincubation led to a cAMP-activated [Ca(2+)](i) increase even at low extracellular [Ca(2+)]. Moreover, the addition of Ca(2+) itself elicited a capacitative [Ca(2+)](i) elevation. This effect was not observed when stores were emptied by the standard technique of inhibiting internal Ca(2+) pumps with 2,5-di-(t-butyl)-1,4-hydroquinone. Therefore, in Dictyostelium, an active internal Ca(2+)-ATPase is absolutely required to allow for Ca(2+) entry. No influence of the filling state of stores on Ca(2+) influx characteristics was found by the Mn(2+)-quenching technique, which monitors the rate of Ca(2+) entry. Both basal and cAMP-activated Mn(2+) influx rates were similar in control cells and cells with empty stores. By contrast, determination of extracellular free Ca(2+) concentration ([Ca(2+)](e)) changes, which represent the sum of Ca(2+) influx and efflux, revealed a higher rate of [Ca(2+)](e) decrease in EGTA-treated than in control amoebae. We conclude that emptying of Ca(2+) stores does not change the rate of Ca(2+) entry but results in inhibition of the plasma membrane Ca(2+)-ATPase. Furthermore, the activities of the Ca(2+) transport ATPases of the stores are of crucial importance for the regulation of [Ca(2+)](i) changes.  相似文献   

14.
Effects of changing cytosolic free Mg(2+) concentration on L-type Ca(2+) (I(Ca)) and Ba(2+) currents (I(Ba)) were investigated in rat ventricular myocytes voltage-clamped with pipettes containing 0.2 or 1.8mM [Mg(2+)] ([Mg(2+)](p)) buffered with 30mM citrate and 10mM ATP. Increasing [Mg(2+)](p) from 0.2 to 1.8mM reduced current amplitude and accelerated its decay under a variety of experimental conditions. To investigate the mechanism for these effects, steady-state and instantaneous current-voltage relationships were studied with two-pulse and tail current (I(T)) protocols, respectively. Increasing [Mg(2+)](p) shifted the V(M) for half inactivation by -20mV but dramatically decreased I(Ca) amplitude at all potentials tested, consistent with a change in gating kinetics that decreases channel availability. This conclusion was supported by analysis of I(T) amplitude, but these latter experiments also suggested that, in the millimolar concentration range, [Mg(2+)](p) might also inhibit permeation through open Ca(2+) channels at positive V(M).  相似文献   

15.
Wu C  Sui G  Thiruchelvam N  Cuckow P  Fry CH 《Cell calcium》2006,39(4):367-374
Sheep fetus is a useful model to study in utero bladder outflow obstruction but little is known about cell physiology of fetal bladders. To remedy this defect we have characterised intracellular Ca(2+) regulation in fetal sheep myocytes of different developmental ages. Fetal detrusor myocytes had a similar resting [Ca(2+)](i) to adult cells and exhibited transient [Ca(2+)](i) increases in response to carbachol, ATP, high-K, caffeine and low-Na. The carbachol transients were abolished by atropine and caffeine; the ATP response was blocked by alpha,beta-methylene ATP; high-K-evoked [Ca(2+)](i) rises were antagonised by verapamil. The maximal responses to carbachol, high-K, caffeine and low-Na in fetal cells were similar to those of adult counterparts, whilst the ATP response was smaller (p < 0.05). These variables were largely similar between the three gestational groups with the exception of ATP-induced response between early fetal and adult bladders (p < 0.05). Dose-response curves to carbachol demonstrated an increase of potency between mid-gestation and early adulthood (p < 0.05). These data show that muscarinic receptors coupled to intracellular Ca(2+) release, P2X receptor-linked Ca(2+) entry, depolarisation-induced Ca(2+) rise via L-type Ca(2+) channels, Na(+)/Ca(2+) exchange and functional intracellular Ca(2+) stores are all operational in fetal bladder myocytes. Whilst most of Ca(2+) regulators are substantially developed and occur at an early fetal age, a further functional maturation for cholinergic sensitivity and purinergic efficacy continues throughout to adulthood.  相似文献   

16.
We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca(2+) release from the endoplasmic reticulum (ER) (i) in powering mitochondrial Ca(2+) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)). For this purpose, we expressed in HeLa cells aequorin-based Ca(2+)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H(1) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca(2+)](c) rise and drop in ER luminal [Ca(2+)] ([Ca(2+)](er)), and then the ER refilled with [Ca(2+)](c) at resting values. With histamine, [Ca(2+)](c) after the initial peak stabilized at a sustained plateau, and [Ca(2+)](er) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca(2+) response than glutamate ( approximately 15 versus approximately 65 microm). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca(2+)](c) plateau and the sustained ER Ca(2+) release and markedly increased the mitochondrial Ca(2+) response. Conversely, mitochondrial Ca(2+) uptake evoked by histamine was drastically reduced by very transient ( approximately 2-s) agonist applications. These data indicate that efficient mitochondrial Ca(2+) uptake depends on the preservation of high Ca(2+) microdomains at the mouth of ER Ca(2+) release sites close to mitochondria. This in turn depends on continuous Ca(2+) release balanced by Ca(2+) reuptake into the ER and maintained by Ca(2+) influx from the extracellular space.  相似文献   

17.
Mitochondrial Ca2+ and the heart   总被引:2,自引:0,他引:2  
It is now well established that mitochondria accumulate Ca(2+) ions during cytosolic Ca(2+) ([Ca(2+)](i)) elevations in a variety of cell types including cardiomyocytes. Elevations in intramitochondrial Ca(2+) ([Ca(2+)](m)) activate several key enzymes in the mitochondrial matrix to enhance ATP production, alter the spatial and temporal profile of intracellular Ca(2+) signaling, and play an important role in the initiation of cell death pathways. Moreover, mitochondrial Ca(2+) uptake stimulates nitric oxide (NO) production by mitochondria, which modulates oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and in turn provides negative feedback for the regulation of mitochondrial Ca(2+) accumulation. Controversy remains, however, whether in cardiac myocytes mitochondrial Ca(2+) transport mechanisms allow beat-to-beat transmission of fast cytosolic [Ca(2+)](i) oscillations into oscillatory changes in mitochondrial matrix [Ca(2+)](m). This review critically summarizes the recent experimental work in this field.  相似文献   

18.
Carotid bodies are peripheral chemoreceptors that detect lowering of arterial blood O(2) level. The carotid body comprises clusters of glomus (type I) cells surrounded by glial-like sustentacular (type II) cells. Hypoxia triggers depolarization and cytosolic [Ca(2+)] ([Ca(2+)](i)) elevation in glomus cells, resulting in the release of multiple transmitters, including ATP. While ATP has been shown to be an important excitatory transmitter in the stimulation of carotid sinus nerve, there is considerable evidence that ATP exerts autocrine and paracrine actions in carotid body. ATP acting via P2Y(1) receptors, causes hyperpolarization in glomus cells and inhibits the hypoxia-mediated [Ca(2+)](i) rise. In contrast, adenosine (an ATP metabolite) triggers depolarization and [Ca(2+)](i) rise in glomus cells via A(2A) receptors. We suggest that during prolonged hypoxia, the negative and positive feedback actions of ATP and adenosine may result in an oscillatory Ca(2+) signal in glomus cells. Such mechanisms may allow cyclic release of transmitters from glomus cells during prolonged hypoxia without causing cellular damage from a persistent [Ca(2+)](i) rise. ATP also stimulates intracellular Ca(2+) release in sustentacular cells via P2Y(2) receptors. The autocine and paracrine actions of ATP suggest that ATP has important roles in coordinating chemosensory transmission in the carotid body.  相似文献   

19.
Lee KK  Uhm DY  Park MK 《FEBS letters》2003,538(1-3):134-138
We have investigated whether low affinity cholecystokinin (CCK) receptors suppress agonist-induced rises of cytosolic free Ca(2+) concentration ([Ca(2+)]c) in pancreatic acinar cells by using properties of caffeine. A high concentration of caffeine (20 mM) completely blocked inositol 1,4,5-trisphosphate (InsP(3))-induced [Ca(2+)]c rises but spared the InsP(3)-independent long-lasting [Ca(2+)]c oscillations. In the presence of 20 mM caffeine, only high concentrations of CCK, but not bombesin or JMV-180, suppressed the caffeine-resistant CCK or bombesin-induced [Ca(2+)]c oscillations, indicating that low affinity CCK receptors inhibit agonist-induced [Ca(2+)]c oscillations. It could be one of the underlying mechanisms by which low affinity CCK receptors suppress secretion in pancreatic acinar cells.  相似文献   

20.
Trypsin premature activation has been thought to be a key event in the initiation phase of acute pancreatitis. Here we test a hypothesis that a sustained increase of cytosolic Ca(2+) concentration ([Ca(2+)](C)) can trigger K(+) influx into pancreas acinar zymogen granules (ZGs) via a Ca(2+)-activated K(+) channel (K(Ca)), and this influx of K(+) then mobilizes bound-Ca(2+) by K(+)/Ca(2+) ion-exchange to increase free Ca(2+) concentration in the ZGs ([Ca(2+)](G)) and release bound-H(+) by K(+)/H(+) ion-exchange to decrease the pH in ZGs (pH(G)). Both the increase of [Ca(2+)](G) and the decrease of pH(G) will facilitate trypsinogen autoactivation and stabilize active trypsin inside ZGs that could lead to acute pancreatitis. The experimental results are consistent with our hypothesis, suggesting that K(+) induced ion-exchanges play a critical role in the initiation of trypsin premature activation in ZGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号