首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Higuchi  H Hayashi    K Abe 《Journal of bacteriology》1997,179(10):3362-3364
Lactobacillus sp. strain E1 catalyzed the decarboxylation of glutamate (Glu), resulting in a nearly stoichiometric release of the products gamma-aminobutyrate (GABA) and CO2. This decarboxylation was associated with the net synthesis of ATP. ATP synthesis was inhibited almost completely by nigericin and about 70% by N,N'-dicyclohexylcarbodiimide (DCCD), without inhibition of the decarboxylation. These findings are consistent with the possibility that a proton motive force arises from the cytoplasmic proton consumption that accompanies glutamate decarboxylation and the electrogenic Glu/GABA antiporter and the possibility that this proton motive force is coupled with ATP synthesis by DCCD-sensitive ATPase.  相似文献   

2.
Previously, we have shown that the soluble form of brain glutamic acid decarboxylase (GAD) is inhibited by ATP through protein phosphorylation and is activated by calcineurin-mediated protein dephosphorylation (Bao, J., Cheung, W. Y., and Wu, J. Y. (1995) J. Biol. Chem. 270, 6464-6467). Here we report that the membrane-associated form of GAD (MGAD) is greatly activated by ATP, whereas adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP), a non-hydrolyzable ATP analog, has no effect on MGAD activity. ATP activation of MGAD is abolished by conditions that disrupt the proton gradient of synaptic vesicles, e.g. the presence of vesicular proton pump inhibitor, bafilomycin A1, the protonophore carbonyl cyanide m-chorophenylhydrazone or the ionophore gramicidin, indicating that the synaptic vesicle proton gradient is essential in ATP activation of MGAD. Furthermore, direct incorporation of (32)P from [gamma-(32)P]ATP into MGAD has been demonstrated. In addition, MGAD (presumably GAD65, since it is recognized by specific monoclonal antibody, GAD6, as well as specific anti-GAD65) has been reported to be associated with synaptic vesicles. Based on these results, a model linking gamma-aminobutyric acid (GABA) synthesis by MGAD to GABA packaging into synaptic vesicles by proton gradient-mediated GABA transport is presented. Activation of MGAD by phosphorylation appears to be mediated by a vesicular protein kinase that is controlled by the vesicular proton gradient.  相似文献   

3.
Pancreatic beta-cells express glutamate decarboxylase (GAD), which is responsible for the production and release of gamma-aminobutyric acid (GABA). Over a 24-h culture period, total GABA release by purified rat beta-cells is eightfold higher than the cellular GABA content and can thus be used as an index of cellular GAD activity. GABA release is 40% reduced by glucose (58 pmol/10(3) cells at 10 mM glucose vs. 94 pmol at 3 mM glucose, P < 0.05). This suppressive effect of glucose was not observed when glucose metabolism was blocked by mannoheptulose or 2,4-dinitrophenol; it was amplified when ATP-dependent beta-cell activities were inhibited by addition of diazoxide, verapamil, or cycloheximide or by reduction of extracellular calcium levels; it was counteracted when beta-cell functions were activated by nonmetabolized agents, such as glibenclamide, IBMX, glucagon, or glucacon-like peptide-1 (GLP-1), which are known to stimulate calcium-dependent activities, such as hormone release and calcium-dependent ATPases. These observations suggest that GABA release from beta-cells varies with the balance between ATP-producing and ATP-consuming activities in the cells. Less GABA is released in conditions of elevated glucose metabolism, and hence ATP production, but this effect is counteracted by ATP-dependent activities. The notion that increased cytoplasmic ATP levels can suppress GAD activity in beta-cells, and hence GABA production and release, is compatible with previous findings on ATP suppression of brain GAD activity.  相似文献   

4.
Correlations were made among ATP synthesis, transmembrane K+ gradients, and leakage of three amino acid neurotransmitters, gamma-aminobutyric acid (GABA), aspartate, and glutamate, in rat brain synaptosomes incubated under normoxic and respiration-limited conditions. Even under normoxic conditions, a substantial proportion of total ATP synthesis (8%) was provided by glycolysis. Limitation of respiration by approximately 30% through addition of amobarbital (Amytal) caused a twofold decrease in the creatine phosphate/creatine ([CrP]/[Cr]) ratio, and consequently the [ATP]/[ADP] ratio, and a threefold increase in lactate production. There was a detectable decrease in intracellular [K+] and small rises in external GABA, aspartate, and glutamate concentrations. More severe limitations in ATP synthesis caused larger declines in the [CrP]/[Cr] ratio and progressive leakage of K+ and neurotransmitter amino acids. A comparison of delta GATP and delta GNa, K showed the former to be larger by 6 kcal, which indicates that the plasma membrane Na+/K+ pump operates at far from equilibrium. Under respiration-limited conditions, even when total ATP synthesis decreased by approximately 80% and [ATP] declined to less than 0.4 mM, delta GATP was still larger than delta GNa,K. It is suggested that during hypoxia and ischemia, the activity of the plasma membrane Na+/K+ pump in brain becomes limited by [ATP], which falls below the Km value for the low-affinity regulatory site on the enzyme. This failure of the pump and consequent collapse of the ion gradients may contribute to the leakage of neurotransmitter amino acids that occurs in these pathological states.  相似文献   

5.
Regulatory properties of brain glutamate decarboxylase   总被引:13,自引:0,他引:13  
1. Glutamate decarboxylase is a focal point for controlling gamma-aminobutyric acid (GABA) synthesis in brain. Several factors that appear to be important in the regulation of GABA synthesis have been identified by relating studies of purified glutamate decarboxylase to conditions in vivo. 2. The interaction of glutamate decarboxylase with its cofactor, pyridoxal 5'-phosphate, is a regulated process and appears to be one of the major means of controlling enzyme activity. The enzyme is present in brain predominantly as apoenzyme (inactive enzyme without bound cofactor). Studies with purified enzyme indicate that the relative amounts of apo- and holoenzyme are determined by the balance in a cycle that continuously interconverts the two. 3. The cycle that interconverts apo- and holoenzyme is part of the normal catalytic mechanism of the enzyme and is strongly affected by several probable regulatory compounds including pyridoxal 5'-phosphate, ATP, inorganic phosphate, and the amino acids glutamate, GABA, and aspartate. ATP and the amino acids promote apoenzyme formation and pyridoxal 5'-phosphate and inorganic phosphate promote holoenzyme formation. 4. Numerous studies indicate that brain contains multiple molecular forms of glutamate decarboxylase. Multiple forms that differ markedly in kinetic properties including their interactions with the cofactor have been isolated and characterized. The kinetic differences among the forms suggest that they play a significant role in the regulation of GABA synthesis.  相似文献   

6.
Small diameter (<20 microm) neurons from the sixth abdominal ganglion of the American cockroach, Periplaneta americana, were enzymatically isolated and responses to exogenously applied gamma-aminobutyric acid (GABA) were recorded using the whole-cell patch clamp technique. With a minimal intracellular medium, responses to repeated applications of GABA decreased to zero within a few minutes. The rate of rundown of GABA responses was decreased by the intracellular inclusion of the phosphatase inhibitors microcystin and okadaic acid, suggesting that phosphorylation is necessary for the maintenance of cockroach GABA receptor function. ATP (5 mM) prevented GABA response rundown. ADP (5 mM) also slowed GABA response rundown, but responses stabilized at a level about half that seen with ATP. In the presence of protein kinase A inhibitory peptide (PKI), ATP was only as efficacious as ADP in slowing rundown. PKI had no effect on the ability of ADP to slow rundown, suggesting that the beta-phosphate of ADP is not involved in PKA-dependent phosphorylation of the GABA receptor. These results suggest that in cockroach neurons, GABA receptor function is maintained intracellularly by adenine nucleotides, not only by phosphorylation, but also possibly by an interaction with a nucleotide recognition site unrelated to PKA-dependent phosphorylation.  相似文献   

7.
The primary goal of this study was to establish whether inhibition of GABA synthesis was sufficient to induce network hyperexcitability in a rat hippocampal slice model comparable to that seen with GABA receptor blockade. We used field and intracellular recordings from the CA1 region of rat hippocampal slices to determine the physiological effects of blocking GABA synthesis with the convulsant, 3-mercaptoproprionic acid (MPA). We measured the rate of synthesis of GABA and glutamate in slices using 2-13C-glucose as a label source and liquid chromatography-tandem mass spectrometry. There was little effect of 3.5mM MPA on evoked events under control recording conditions. Tissue excitability was enhanced following a series of stimulus trains; this effect was enhanced when GABA transport was blocked. Evoked inhibitory potentials (IPSPs) failed following repetitive stimulation and MPA. Spontaneous epileptiform activity was seen reliably with elevated extracellular potassium (5mM). GABA synthesis decreased by 49% with MPA alone and 45% with the combination of MPA and excess potassium; GABA content was not substantially altered. Our data indicate: (1) GABAergic inhibition cannot be significantly compromised by MPA without network activation; (2) GABAergic synaptic inhibition is mediated by newly synthesized GABA; (3) there is a depletable pool of GABA that can sustain GABAergic inhibition when synthesis is impaired under basal, but not activated conditions; (4) overt hyperexcitability is only seen when newly synthesized GABA levels are low.  相似文献   

8.
The modulation of intracellular GABA activated 36Cl inout permeation across single Deiters' neuron membranes has been studied in a microchamber system. Addition of Mg2+/ATP on the membrane cytoplasmic side reduces strongly the GABA effect as does ATP alone. However, the greatest inhibition of the GABA effect is given by the addition of Mg2+ to the intracellular side buffer: a complete block of the stimulation by GABA of 36Cl inout permeation. This is interpreted as due to the presence in this case of a constant concentration of exogenous Mg2+ acting together with endogenous ATP in the small cytoplasmic layer on the membrane inner side. The addition of ADP to Mg2+/ATP increases the inhibitory effect of the latter. This is presumably due to an extra increase of ATP, locally under the membrane, due to phosphorylation of ADP by endogenous phosphocreatine. Overall, the data confirm that phosphorylating conditions impair the intracellular GABA action on 36Cl inout permeation.  相似文献   

9.
gamma-Aminobutyric acid (GABA) synthesis was studied in rat brain synaptosomes by measuring the increase of GABA level in the presence of the GABA-transaminase inhibitor gabaculine. The basal rate of synaptosomal GABA synthesis in glucose-containing medium (25.9 nmol/h/mg of protein) was only 3% of the maximal activity of glutamate decarboxylase (GAD; 804 +/- 83 nmol/h/mg of protein), a result indicating that synaptosomal GAD operates at only a small fraction of its catalytic capacity. Synaptosomal GABA synthesis was stimulated more than threefold by adding 500 microM glutamine. Glutamate also stimulated GABA synthesis, but the effect was smaller (1.5-fold). These results indicate that synaptosomal GAD is not saturated by endogenous levels of its substrate, glutamate, and account for part of the unused catalytic capacity. The greater stimulation of GABA synthesis by glutamine indicates that the GAD-containing compartment is more accessible to extrasynaptosomal glutamine than glutamate. The strong stimulation by glutamine also shows that the rates of uptake of glutamine and its conversion to glutamate can be sufficiently rapid to support GABA synthesis in nerve terminals. Synaptosomes carried out a slow net synthesis of aspartate in glucose-containing medium (7.7 nmol/h/mg of protein). Aspartate synthesis was strongly stimulated by glutamate and glutamine, but in this case the stimulation by glutamate was greater. Thus, the larger part of synaptosomal aspartate synthesis occurs in a different compartment than does GABA synthesis.  相似文献   

10.
Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na+, K+, and H+ on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na+ dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na+/GABA symporter energized by Na+‐exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway.  相似文献   

11.
gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia   总被引:6,自引:0,他引:6  
In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.  相似文献   

12.
The rate of -aminobutyric acid (GABA) synthesis in rat-brain slices was determined by inhibiting GABA transaminase with 20-M gabaculine and measuring the increase of GABA. Added 500-M glutamine increased the rate of GABA synthesis by 50%, indicating that glutamate decarboxylase is not saturated in brain slices. The stimulation of GABA synthesis with added glutamine in brain slices was much less than that reported for synaptosomes. The lower stimulation in slices was attributable to astrocytic glutamine production, as the rate of GABA synthesis decreased by 44% when glutamine production was inhibited with methionine sulfoximine. Added glutamine restored the rate to the maximal value observed in brain slices. The rate of GABA synthesis was decreased by 65% in slices pretreated with an inhibitor of glutaminase, and added glutamine did not reverse this effect. These results suggest that glutamine produced by astrocytes is a quantitatively important precursor of GABA synthesis in cortical slices.  相似文献   

13.
Using internally dialyzed neurons of Helix, we have examined the effects of sodium-pump activity and intracellular ATP concentration on transmembrane currents induced by acetylcholine (ACh) and gamma-aminobutyric acid (GABA). We also report on the effects of pump activity and levels of intracellular ATP on binding by Helix ganglia of 3H-alpha-bungarotoxin (3H-alpha-BT) and 3H-GABA. Both ouabain-containing and potassium-free solutions depressed the neurotransmitter-induced transmembrane current of one type of dialyzed neurons. An increase in the intracellular ATP concentration led to a depression of ACh-induced currents and to the disappearance of the blocking effect of ouabain on these currents. Intracellular ADP had a similar but smaller effect on transmitter-induced currents, and intracellular AMP was ineffective. The depressing effect of internal ATP on ACh-induced currents was absent in the presence of an inhibitor of membrane phosphorylation (dinitrophenol). The binding of tritium-labeled alpha-BT and GABA to the membranes was depressed by both ouabain-containing and K-free solutions and also by compounds (theophylline and NaF) which increase the levels of intracellular ATP. The results suggest that the Na pump modulates the affinity of ACh and GABA membrane receptors by the regulation of the phosphorylated state of membrane receptors.  相似文献   

14.
Phosphorylation of the sensitive to GABA(A)-ergic ligands Cl-, HCO3--stimulated Mg2+-ATPase of the plasma membranes from fish brain by [gamma-32P]ATP was investigated in the presence of Mg2+. It was established, that formation of the phosphoprotein at 0-1 degrees C is dependent on time incubation and concentration of Mg2+ in the incubation medium. Hydroxylamine (50 mM) and pH (10) completely inhibited formation of phosphorylated intermediate. Ions of Cl- (10 mM)+HCO3- (2 mM) and also GABA (1-100 microM) dephosphorylated the enzyme. The dephosphorylating effect of GABA on the membrane samples did not appear in the presence of bicuculline. o-Vanadate (10 microM) eliminates the dephosphorylating effect of anions and GABA on the phosphoprotein. It was established by SDS-PAAG electrophoresis and autoradiographia that investigated phosphorylation and GABA(A)-induced dephosphorylation is performed by the protein with molecular weight aproximately 56 kDa. Such molecular weight has a subunit which forms oligomer composition of the sensitive to GABA(A)-ergic ligands Cl-, HCO3--ATPase from fish brain. The obtained data demonstrated that Cl, HCO3- ATPase from fish brain can be directly phosphorylated by [gamma-32P]ATP in the presence of Mg2+ and forms the phosphorylation intermediate.  相似文献   

15.
Although originally cloned from rat brain, the P2X7 receptor has only recently been localized in neurones, and functional responses mediated by these neuronal P2X7 receptors (P2X7 R) are largely unknown. Here we studied the effect of P2X7 R activation on the release of neurotransmitters from superfused rat hippocampal slices. ATP (1-30 mm) and other ATP analogues elicited concentration-dependent [3 H]GABA outflow, with the following rank order of potency: benzoylbenzoylATP (BzATP) > ATP > ADP. PPADS, the non-selective P2-receptor antagonist (3-30 microm), Brilliant blue G (1-100 nm) the P2X7 -selective antagonist and Zn2+ (0.1-30 microm) inhibited, whereas lack of Mg2+ potentiated the response by ATP. In situ hybridization revealed that P2X7 R mRNA is expressed in the neurones of the cell body layers in the hippocampus. P2X7 R immunoreactivity was found in excitatory synaptic terminals in CA1 and CA3 region targeting the dendrites of pyramidal cells and parvalbumin labelled structures. ATP (3-30 microm) and BzATP (0.6-6 microm) elicited concentration-dependent [14 C]glutamate efflux, and blockade of the kainate receptor-mediated transmission by CNQX (10-100 microm) and gadolinium (100 microm), decreased ATP evoked [3 H]GABA efflux. The Na+ channel blocker TTX (1 microm), low temperature (12 degrees C), and the GABA uptake blocker nipecotic acid (1 mm) prevented ATP-induced [3 H]GABA efflux. Brilliant blue G and PPADS also reduced electrical field stimulation-induced [3 H]GABA efflux. In conclusion, P2X7 Rs are localized to the excitatory terminals in the hippocampus, and their activation regulates the release of glutamate and GABA from themselves and from their target cells.  相似文献   

16.
The release of gamma-aminobutyric acid (GABA) and ATP from rat beta cells was monitored using an electrophysiological assay based on overexpression GABA(A) or P2X2 receptor ion channels. Exocytosis of LDCVs, detected by carbon fiber amperometry of serotonin, correlated strongly (approximately 80%) with ATP release. The increase in membrane capacitance per ATP release event was 3.4 fF, close to the expected capacitance of an individual LDCV with a diameter of 0.3 microm. ATP and GABA were coreleased with serotonin with the same probability. Immunogold electron microscopy revealed that approximately 15% of the LDCVs contain GABA. Prespike "pedestals," reflecting exit of granule constituents via the fusion pore, were less frequently observed for ATP than for serotonin or GABA and the relative amplitude (amplitude of foot compared to spike) was smaller: in some cases the ATP-dependent pedestal was missing entirely. An inward tonic current, not dependent on glucose and inhibited by the GABA(A) receptor antagonist SR95531, was observed in beta cells in clusters of islet cells. Noise analysis indicated that it was due to the activity of individual channels with a conductance of 30 pS, the same as expected for individual GABA(A) Cl- channels with the ionic gradients used. We conclude that (a) LDCVs accumulate ATP and serotonin; (b) regulated release of GABA can be accounted for by exocytosis of a subset of insulin-containing LDCVs; (c) the fusion pore of LDCVs exhibits selectivity and compounds are differentially released depending on their chemical properties (including size); and (d) a glucose-independent nonvesicular form of GABA release exists in beta cells.  相似文献   

17.
We have evaluated GABA(A)receptor function during treatment of 1-methyl-4-phenylpridinium (MPP+) using patch-clamp perforated whole-cell recording techniques in acutely dissociated dopaminergic (DAergic) neurons from rat substantia nigra compacta (SNc). Gamma-aminobutyric acid (GABA), glutamate or glycine induced inward currents (I(GABA), I(Glu), I(Gly)) at a holding potential (VH) of -45 mV. The I(GABA) was reversibly blocked by the GABA(A) receptor antagonist, bicuculline, suggesting that I(GABA) is mediated through the activation of GABA(A) receptors. During extracellular perfusion of MPP+ (1-10 microm), I(GABA) , but neither I(Glu) nor I(Gly), declined (termed run-down) with repetitive agonist applications, indicating that the MPP+-induced I(GABA) run-down occurred earlier than I(Gly) or I(Glu) under our experimental conditions. The MPP+-induced I(GABA) run-down can be prevented by a DA transporter inhibitor, mazindol, and can be mimicked by a metabolic inhibitor, rotenone. Using conventional whole-cell recording with different concentrations of ATP in the pipette solution, I(GABA) run-down can be induced by decreasing intracellular ATP concentrations, or prevented by supplying intracellular ATP, indicating that I(GABA) run-down is dependent on intracellular ATP concentrations. A GABA(A) receptor positive modulator, pentobarbital (PB), potentiated the declined I(GABA) and eliminated I(GABA) run-down. Corresponding to these patch-clamp data, tyrosine hydroxylase (TH) immunohistochemical staining showed that TH-positive cell loss was protected by PB during MPP+ perfusion. It is concluded that extracellular perfusion of MPP+ induces a functional run-down of GABA(A) receptors, which may cause an imbalance of excitation and inhibition of DAergic neurons.  相似文献   

18.
GABA synthesis in mouse brain in vivo was estimated by measuring the rate of GABA accumulation one hour after inhibition of GABA degradation using the selective and irreversible antagonism of GABA-transaminase by gabaculine. Using this method we found that acute and repeated ethanol administration lead to a potent depression of gabaculine induced enhancement of GABA levels in mouse brain cerebellum and cerebral cortex. Alcohol, in the absence of gabaculine had no effect on steady state GABA levels. These results demonstrate potent effects of ethanol on the dynamics of GABA metabolism which are compatible with a GABA like effect of ethanol.  相似文献   

19.
Abstract— The effects of γ-butyrolactone (GBL) and picrotoxin on both the post-mortem and amino-oxyacetic acid (AOAA) induced accumulations of γ-aminobutyric acid (GABA) were examined in rats. GBL produced a marked dose-dependent decrease in AOAA-induced GABA accumulation in caudate. globus pallidus, cerebellar and cerebral cortices. The cingulate cortex showed the greatest response to GBL treatment; subanesthetic doses completely blocked the effect of AOAA. Picrotoxin increased the AOAA-induced accumulation of GABA in parietal, entorhinal and cerebellar cortices, and had no significant effect in pyriform or cingulate cortices. Neither drug significantly altered the post-mortem accumulation of GABA. Results suggest that picrotoxin, a GABA antagonist and convulsant drug, causes an increase in GABA synthesis in vivo. The apparent decrease in GABA synthesis following GBL treatment was greater than that observed with anesthetic doses of chloral hydrate and was not blocked by picrotoxin. Alterations in the activity of GABA neurons, cerebral glucose metabolism and GAD activity may contribute to the apparent decrease in in vivo GABA synthesis caused by GBL.  相似文献   

20.
Abstract— The effect of diazepam and pentobarbital on γ-aminobutyric acid (GABA) levels, the aminooxyacetic acid (AOAA)-induced accumulation of GABA, and the in vitro activity of l -glutamate 1-carboxyl-lyase (EC 4.1.1.15) [GAD] were studied in various regions of rat brain. Diazepam increased GABA levels in the substantia nigra, diminished the AOAA-induced accumulation of GABA in the caudate nucleus, cingulate, parietal and entorhinal cortex and had no effect on GABA accumulation in the pyriform and cerebellar cortex. After pentobarbital, GABA levels were elevated in the caudate nucleus but decreased in the parietal and pyriform cortex; the AOAA-induced accumulation of GABA also diminished in all cortical regions studied. No correlation was found between the apparent changes in GABA synthesis, as estimated by accumulation after inhibition of 4-aminobutyrate-2-oxoglu-tarate (EC 2.6.1.19) [GABA-T] with AOAA, and the changes in GABA levels induced by these drugs. The reduction in AOAA-induced GABA accumulation after diazepam and pentobarbital treatment was most pronounced in regions which showed the greatest accumulation of GABA after AOAA administration. Neither diazepam nor pentobarbital administration affected the activity of GAD in homogenates of cingulate cortex. Chlorpromazine, at a dose which decreased spontaneous activity, enhanced the AOAA-induced GABA accumulation in the cingulate cortex, suggesting that drug-induced sedation is not necessarily associated with decreased GABA synthesis. While regional differences were observed in the effects of diazepam and pentobarbital on GABA synthesis, both agents appear to inhibit GABA synthesis in vivo and both do so, in at least some brain areas, at subsedative doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号