首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Planktivorous fish can exert strong top‐down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three‐spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low‐diversity brackish water zooplankton community using a 16‐day mesocosm experiment. The experiment was conducted on a small‐bodied spring zooplankton community in high‐nutrient conditions, as well as a large‐bodied summer community in low‐nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small‐bodied community with high predation pressure and no dispersal or migration, the selective particulate‐feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter‐feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large‐bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community.  相似文献   

2.
We used mesocosms to analyze predation impacts on the prey populations and prey community structures by two cyclopoid copepod species, the larger Mesocyclops pehpeiensis and the smaller Thermocyclops taihokuensis, who coexist with small-sized herbivorous zooplankton species in a fish-abundant lake. The overall predation impact on the prey populations was stronger for Mesocyclops than for Thermocyclops. Mesocyclops had a strong and less selective impact on the rotifer community but a selective impact on the crustaceans. In contrast, Thermocyclops had a selective predation impact on rotifers but a weak and less selective impact on the crustacean community. As a result, the former predator reduced the diversity of the crustacean community but not the rotifer community, while the latter had an opposite impact on the diversities of the two communities. It has been suggested that fish induce development of a zooplankton community dominated by the small-sized zooplankton species in fish-abundant lakes. Our results demonstrated that cyclopoid copepods altered species composition and diversity of the small-sized zooplankton community in such lakes. Thus, the results have given an important suggestion on the role of the invertebrate predator cyclopoid copepods, which often coexist with fish, that they determine population dynamics and community structures of small-sized zooplankton in fish-abundant lakes.  相似文献   

3.
SUMMARY. 1. Adults of the calanoid copepod, Epischura nevadensis , aggregate in situ near the thermocline in Lake Tahoe, California-Nevada. together with adults of another species of calanoid copepod, Diaptomus tyrelli and juveniles of both species. With a series of laboratory predation and algal clearance trials, we show that foraging rates of adult E. nevadensis are determined not only by the density of co-occurring potential prey (small copepods), but also by the presence of co-occurring non-prey neighbours (large, adult copepods). These effects occur at densities and in zooplankton assemblages found naturally, emphasizing the ecological importance of neighbours other than prey on zooplankton feeding.
2. Neighbours are distinguished primarily by size. Although predation rates increase linearly with the densities of small copepods. both algal clearance and predation rates decrease in the presence of large copepods. We also show, with a field predation experiment using small enclosures, that adults are size selective within species and that Diaptomus are selected over conspecifics of the same size.
3. We hypothesize that by reducing foraging rates in the presence of large zooplankton. E. nevadensis avoids predators and reduces predation risk at the cost of reduced energy consumption.  相似文献   

4.
Food supply and prey selection in planktivorous cyprinidae   总被引:4,自引:0,他引:4  
Erik Bohl 《Oecologia》1982,53(1):134-138
Summary In small Bavarian lakes, the gut contents of the Cyprinid fish roach (Rutilus rutilus), rudd (Scardinius erythrophtalamus), bream (Abramis brama) and bleak (Alburnus alburnus), and the actural food supply during the fish's feeding period were examined in relation to the species composition of zooplankton. Accompanied by feeding experiments in the laboratory, the selective effect of fish predation could be attributed to the distribution patterns of prey and predator in time and space, to the prey's specific visibility and escape ability and, to some extent, to the fish's active choice. The possibility that the species composition of zooplankton is regulated was indicated only in the fish's positively abundance-dependent preference for the prey types and restricted to only a few plankter species.  相似文献   

5.
The short-term effects of perch predation on a zooplankton prey community   总被引:5,自引:5,他引:0  
An enclosure experiment was performed in 1981 to determine if predation by perch (Perca flavescens) affected the density, depth distribution or size structure of members of the crustacean zooplankton community in Lac Choiniere, Quebec. Perch predation reduces the density of all but the smallest zooplankton in enclosures, and the relative rate of predation is influenced by both size and depth distribution of prey species. More individuals and proportionally more large individuals are found in deep water when perch are present. These results are discussed in relation to theories that size-selective predation alters numerous characteristics of zooplankton prey community structure.  相似文献   

6.
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.  相似文献   

7.
Mechanisms regulating zooplankton populations in a high-mountain lake   总被引:3,自引:0,他引:3  
SUMMARY 1. We studied the seasonal succession of phyto- and zooplankton and the potential impact of predation by salmonids on zooplankton population dynamics in a high-mountain Swiss lake.
2. A comparison of patterns in the abundance, body length, fecundity and age structure in the Daphnia galeata population strongly suggests that trout predation had little impact on the population and was not the cause for a decline in summer.
3. The dominance in the lake of adult trout that feed mainly on benthic prey may buffer the effect of predation on the larger zooplankton. Further, the relatively high amount of phytoplankton after spring thaw could be important for sustaining the Daphnia population under moderate fish predation.
4. Partial correlation analyses proved circumstantial evidence for both exploitative and interference competition between some zooplankton taxa. D. galeata depressed performance of other plankton species through exploitative competition.
5. Our study shows that the impact of fish on zooplankton in high-mountain lakes depends strongly on food web structure and trophic state of the lake. Where fish predation is weak, invertebrate predation combined with competition for food may be responsible for the dominance of large-bodied zooplankton species.  相似文献   

8.
Recent studies suggest the necessity of understanding the interactive effects of predation and productivity on species coexistence and prey diversity. Models predict that coexistence of prey species with different competitive abilities can be achieved if inferior resource competitors are less susceptible to predation and if productivity and/or predation pressure are at intermediate levels. Hence, predator effects on prey diversity are predicted to be highly context dependent: enhancing diversity from low to intermediate levels of productivity or predation and reducing diversity of prey at high levels of productivity or predation. While several studies have examined the interactive effects of herbivory and productivity on primary producer diversity, experimental studies of such effects in predator‐prey systems are rare. We tested these predictions using an aquatic field mesocosm experiment in which initial density of the zooplankton predator Notonecta undulata and productivity were manipulated to test their interactive effects on diversity of seven zooplankton, cladoceran species that were common in surrounding ponds. Two productivity levels were imposed via phosphorus enrichment at levels comparable to low and intermediate levels found within neighboring natural ponds. We used open systems to allow for natural dispersal and behaviorally‐mediated numerical responses by the flight‐capable predator. Effects of predators on zooplankton diversity depended on productivity level. At low and high productivity, prey species richness declined while at high productivity it showed a unimodal relationship with increasing the predator density. Effects of treatments were weaker when using Pielou's evenness index or the inverse Simpson index as measures of prey diversity. Our findings are generally consistent with model predictions in which predators can facilitate prey coexistence and diversity at intermediate levels of productivity and predation intensity. Our work also shows that the functional form of the relationship between prey diversity and predation intensity can be complex and highly dependent on environmental context.  相似文献   

9.
Z. Maciej Gliwicz 《Hydrobiologia》1994,272(1-3):201-210
One of the most obvious features of tropical lakes and reservoirs is the small body size of their zooplankton taxa. It is believed that this is the result of high and persistent predation by abundant planktivorous fish, which select large-bodied zooplankton prey thus making them more vulnerable to extinction in tropical as compared to temperate habitats. Do these extinctions result directly from fish predation? Could the high predation-induced mortality alone be responsible for an extermination of the population from a habitat? Or could indirect effects of predation be responsible? Some important indirect effects can be seen at the demographic level; these include reduced reproduction in the population resulting from higher vulnerability of ovigerous females to predation by visually oriented planktivores. Other important indirect effects can be observed at the individual level; these include shifts in behavior (from foraging to predator avoidance) and adjustments in physiology (from high to low feeding rate) in those planktonic animals which detect danger from their predators by sensing either the ‘predator odor’ or an ‘alarm substance’ originating from injured conspecific prey. Although a zooplankton species density may mostly result from the brutal force of direct predator impact on the population (mortality), it is more likely that its distribution in time and space could be attributed to a combination of indirect effects of predation on individual behavior and physiology. An example of periodicity in density and depth distribution patterns of Cahora Bassa zooplankton species and their periodic exterminations seems to confirm the role of indirect effects of predation by planktivorous fish.  相似文献   

10.
Selective predation by planktivore fish appears to be an important regulatory factor of zooplankton communities, potentially causing large changes in species composition and size distributions within populations. In this study, prey preferences and size-selective predation on zooplankton by Arctic charr were examined in six subarctic lakes with Arctic charr as the dominant pelagic fish species. Most of the lakes had a zooplankton community dominated by copepods (Cyclops scutifer and Eudiaptomus graciloides), but the pelagic charr evidently selected cladoceran species (Bythotrephes longimanus, Daphnia sp. and Bosmina sp.), likely because the copepods have a higher mobility and evasiveness than the cladocerans. Furthermore, a strong size selection was also revealed for both Bosmina sp. and Daphnia sp., as individual prey from Arctic charr stomachs were exclusively larger than individuals sampled in the environment. Additionally, visibility due to size, morphology and pigmentation (egg-carrying females) was also a major factor for the selection of zooplankton prey. In conclusion, Arctic charr was found to be highly selective on zooplankton both in respect to species composition and individual size of Bosmina sp. and Daphnia sp.  相似文献   

11.
The diel migration patterns of Mesocyclops edax and its preyin a small lake were followed in two studies separated by approximatelyone year. Gut contents of the predators were examined and selectivityindices calculated at each depth at 0100 h during 1980. Thethree principal zooplankton prey found in the guts of M. edaxwere Keratella, Kellicottia, and Bosmina. The predator and allthree major prey species exhibited unique and different dielvertical distribution and migration patterns. The complex natureof the spatio-temporal variation in prey density to which M.edax is exposed, demonstrates the dangers of using selectivityindices without knowledge of the distribution patterns of bothpredator and prey. An increase in vertebrate predation pressurefrom one year to the next is thought to be responsible for anincrease in the abundance of small zooplankton species, thedisappearance of two out of three of the large zooplankton species,and the onset of a pronounced nocturnal migration pattern inthe third large species. 1Present address: Biology Department, Williams Hall #31, LehighUniversity, Bethlehem, PA 18015, USA  相似文献   

12.
To assess potential differences in predation impact on zooplankton communities by small (larva) and large 0+ juvenile fish, 18 studies were reviewed from fresh water and the brackish Baltic Sea of the northern hemisphere temperate region. These case studies were performed either in the field or in mesocosm experiments. Larva stocks were found to exert only minor impact on small zooplankton species such as rotifers, copepodids and small cladocerans. In contrast, stocks of 0+ juveniles were found to have the potential to depress populations of large cladocerans and copepods, especially during late summer and autumn. However, studies where both 0+ juvenile fish consumption and zooplankton dynamics and production were exactly quantified are still very rare, and therefore final evaluation of this interaction cannot be made. In addition, papers were summarized that describe differences in morphological and physiological performance between larva and 0+ juvenile fish. The greater impact of 0+ juvenile fish on large zooplankton may be explained by their larger mouth gape and by their better developed abilities to detect and consume their prey items. However, this partly is lessened by the lower energy requirements of juvenile fish compared with identical biomasses of fish larvae, although larva bioenergetics remains only fragmentarily understood. Consequently, selective predation by fish larvae on particular small zooplankton prey may be more important than has been detected so far.  相似文献   

13.
The predation impact of the larvae of pond smelt Hypomesus transpacificus nipponensis on a zooplankton community was studied using mesocosms. The fish significantly depressed the abundances of copepod nauplii and rotifers, especially Hexarthra mira. The vulnerabilities of these prey might be determined by their swimming behavior and population density, suggesting that larval fish selectively prey on zooplankton that have a high encounter rate with the predator. The larvae did not have a negative effect on the densities of cladocerans, but fish predation altered the cladoceran community structure from the dominance of B. longirostris to that of B. fatalis. This result suggests that larval fish predation is an important factor that shifts the species composition of Bosmina in some lakes, the shift occurring in the season when fish larvae are abundant. Our results have shown that predation by the larval fish would control not only the abundance, but also the community structure of the small-sized zooplankton prey.  相似文献   

14.
Prey-dependent models, with the predation rate (per predator) a function of prey numbers alone, predict the existence of a trophic cascade. In a trophic cascade, the addition of a top predator to a two-level food chain to make a three-level food chain will lead to increases in the population size of the primary producers, and the addition of nutrients to three-level chains will lead to increases in the population numbers at only the first and third trophic levels. In contrast, ratio-dependent models, with the predation rate (per predator) dependent on the ratio of predator numbers to prey, predict that additions of top predators will not increase the population sizes of the primary producers, and that the addition of nutrients to a three-level food chain will lead to increases in population numbers at all trophic levels. Surprisingly, recent meta-analyses show that freshwater pelagic food web patterns match neither prey-dependent models (in pelagic webs, ''prey'' are phytoplankton, and ''predators'' are zooplankton), nor ratio-dependent models. In this paper we use a modification of the prey-dependent model, incorporating strong interference within the zooplankton trophic level, that does yield patterns matching those found in nature. This zooplankton interference model corresponds to a more reticulate food web than in the linear, prey-dependent model, which lacks zooplankton interference. We thus reconcile data with a new model, and make the testable prediction that the strength of trophic cascades will depend on the degree of heterogeneity in the zooplankton level of the food chain.  相似文献   

15.
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.  相似文献   

16.
Identifying the relative importance of predation and resources in population dynamics has a long tradition in ecology, while interactions between them have been studied less intensively. In order to disentangle the effects of predation by juvenile fish, algal resource availability and their interactive effects on zooplankton population dynamics, we conducted an enclosure experiment where zooplankton were exposed to a gradient of predation of roach (Rutilus rutilus) at different algal concentrations. We show that zooplankton populations collapse under high predation pressure irrespective of resource availability, confirming that juvenile fish are able to severely reduce zooplankton prey when occurring in high densities. At lower predation pressure, however, the effect of predation depended on algal resource availability since high algal resource supply buffered against predation. Hence, we suggest that interactions between mass-hatching of fish, and the strong fluctuations in algal resources in spring have the potential to regulate zooplankton population dynamics. In a broader perspective, increasing spring temperatures due to global warming will most likely affect the timing of these processes and have consequences for the spring and summer zooplankton dynamics.  相似文献   

17.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   

18.
We hypothesized that native Leptodora kindtii would be shorter and have smaller feeding baskets in central Ontario lakes with greater abundances of small-bodied zooplankton prey, and that differences in zooplankton size among lakes could be attributed to the invasive cladoceran Bythotrephes longimanus. We evaluated these conjectures by comparing size metrics of Leptodora and the size of their preferred cladoceran prey in lakes invaded or not by Bythotrephes. Leptodora was less abundant in invaded lakes, but were smaller bodied with smaller feeding baskets only in lakes with long invasion histories. Small cladoceran abundance was greater in non-invaded lakes and was directly related to Leptodora abundance although not to Leptodora size. Mean Leptodora body size declined with increasing abundance of Bythotrephes. We evaluated three possible explanations for these patterns in Leptodora—(a) competition with Bythotrephes for zooplankton prey, (b) direct predation by Bythotrephes, and (c) size-selective predation by fish. While we were unable to unequivocally distinguish among these hypotheses, our observations are most consistent with predation by Bythotrephes changing zooplankton community composition and size structure in a manner that is detrimental to Leptodora. Our results indicate that Bythotrephes invasion may trigger more complex and subtle changes in food webs than previously thought.  相似文献   

19.
Schulz  Kimberly L.  Yurista  Peder M. 《Hydrobiologia》1998,380(1-3):179-193
The traditional view of predaceous zooplankton is that they prefer small-bodied prey, are hindered by morphological anti-predator defenses, and have a minor influence on zooplankton communities when fish are present. We performed a series of experiments with the large-bodied onychopod (cladoceran) Bythotrephes cederstroemi, in which we incubated this predator with known prey to determine prey preference and predation rates. We also performed an allozyme analysis of prey tissue in the gut of B. cederstroemi collected from several stations around Lake Michigan to determine what prey types are chosen in the field. We found that B. cederstroemi does not fit the standard invertebrate predator mold: adult B. cederstroemi prefer large (>2.0 mm) Daphnia pulicaria over smaller individuals; the elongated tailspine and helmet of Daphnia galeata mendotae are not effective deterrents to B. cederstroemi predation; and B. cederstroemi is a generalist predator with the potential to consume a significant portion of cladoceran production in Lake Michigan. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The strength of predation impact on recipient environments may vary among introduced populations due to their local adaptations to different prey. We examined whether functional diversification associated with morphological differences may be observed among the introduced populations of invasive bluegill sunfish Lepomis macrochirus (Perciformes, Centrarchidae) in Japan. The two examined populations are morphologically different, although they were recently derived from a common American source and colonized in different lakes. We performed a laboratory experiment wherein these populations were fed the benthic (chironomid larva) and the pelagic prey (daphnid zooplankton). The results revealed that a population colonizing in a shallower lake and foraging on benthic invertebrates in the wild had a greater impact on the benthic prey, whereas the other population colonizing in a deeper lake and foraging on crustacean zooplankton have consumed the pelagic prey more efficiently. A series of regression analyses showed that morphological differences among individuals were responsible for these population differences. The evidence obtained suggests that morphological adaptations by introduced bluegill populations enhance the strength of predation impact on a prey resource consumed in a relevant environment, but reduce the impact on the other prey. Thus, although the introduced Japanese populations were recently derived from a common ancestor, the predation impacts on the native prey community vary due to morphological adaptations to different prey.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 601–610.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号