首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Brown trout (Salmo trutta) display extensive plasticity in marine migratory behaviours, with marine migrations considered to be an adaptive strategy which enables sea trout to maximize growth and reproductive potential. However, marine migrations are not without associated costs, including threats posed by ever-increasing salmon lice (Lepeophtheirus salmonis) infestations. In the present study, we used passive integrated transponder technology to characterize variability in sea trout migration behaviour amongst three catchments situated in a region of intensive salmon farming in central Norway. Specifically, we investigate how lice infestation, out-migration date and body size alter sea trout return rate and marine residence duration during the first out-migration to sea from each catchment. Distinct catchment-specific differences in sea trout out-migration size and the number of cohorts were observed, but larger body size did not guarantee the successful return of migrating trout. The marine residence duration of individuals that successfully returned to freshwater was positively correlated with lice infestation risk, suggesting for these individuals the lethal infestation threshold had not been reached. Our results also suggest that sea trout populations from lotic-dominated catchments are potentially at greater risk from size-related threats to their survival encountered during their marine migrations than sea trout from lentic-dominated catchments. The variability in sea trout migratory behaviour amongst catchments observed here emphasizes the challenges fisheries managers face when deciding the best actions to take to protect the anadromous portion of brown trout populations.  相似文献   

2.
A synthesis of results from two projects was assessed to analyse possible influence of sea lice Lepeophtheirus salmonis on marine Atlantic salmon Salmo salar survival. During the years 1992–2004, trawling for wild migrating post-smolts was performed in Trondheimsfjord, a fjord in which no Atlantic salmon aquaculture activity is permitted. Prevalence and intensity of sea lice infections on migrating wild post-smolts differed between years. A correlation analysis between 1 sea-winter (SW) Atlantic salmon catch statistics from the River Orkla (a Trondheimsfjord river) and sea lice infections on the migrating smolts in the Trondheimsfjord was not significant. Up to 2% reduction in adult returns due to sea-lice infection was expected. In addition, experimental releases from 1996 to 1998 with individually tagged groups of hatchery-reared Atlantic salmon smolts given protection against sea-lice infection was performed. Higher recaptures of adult Atlantic salmon from 1998 treated smolts compared to the control group may correspond to high abundance of sea lice found on the wild smolt, and may indicate influence on post-smolt mortality. These studies indicate that post-smolt mortality in Trondheimsfjord is marginally influenced by sea lice infection; however, the methods for assessing wild smolt mortality might be insufficient. Higher infections of sea lice farther out in the fjord may indicate more loss in Atlantic salmon returns in some years.  相似文献   

3.
The 30 year time series analyses revealed large temporal variation in the return rates and a recent increase in abundance of previous spawning Atlantic salmon Salmo salar in the River Teno, northern Scandinavia. The mean proportion of repeat spawners was 7 and 4% in the total Atlantic salmon catch and 9 and 22% in multi‐sea‐winter (MSW) catch component for females and males, respectively. Previous spawners constituted on the average 7% of the catch in mass but up to 20%(31 t) and 30%(19 t) in 2003 and in 2004, respectively. In 1975–2000, the proportion of previous spawners varied between 1 and 6%(3–12% of MSW Atlantic salmon), whereas in 2001–2004, they accounted for 8–21%(16–35% of MSW Atlantic salmon) of the total Atlantic salmon catch. The number of previous spawners in the catch correlated significantly with the preceding numbers of respective 1–3 sea‐winter (SW) maiden Atlantic salmon 2 years earlier. The recent increase in the numbers of 1S1 and 2S1 (1 or 2 years at sea followed by first spawning and 1 year reconditioning period at sea) alternate spawning Atlantic salmon was a consequence of higher numbers of maiden 1SW and 2SW Atlantic salmon in the catches and increased sea temperatures. Similarly, the return rate of 1SW Atlantic salmon to second spawning has improved in recent years. Most previous spawners ascended and were captured early in the fishing season. The smolt and sea‐age combinations of repeat spawners comprised 68 age groups contributing with the annual mean of 15 age groups to the great diversity of the River Teno Atlantic salmon population complex.  相似文献   

4.

Background

Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka).

Methodology/Principal Findings

We used genetic analyses to determine the origin of sockeye from Canada''s two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance.

Conclusions/Significance

This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.  相似文献   

5.
6.
The annual variation in sea-age of maturation for a hatchery dependent stock of Atlantic salmon was compared to variation in post-smolt growth as evidenced by circuli spacing patterns. The proportion of returns of 1-seawinter (1 SW) and 2 SW salmon and the fraction of the smolt year class or cohort that maturated as 1 SW fish, were compared to seasonal growth indices determined from circuli spacing on the scales of smolt class survivors returning as 1 SW and 2 SW spawners. Using image processing techniques, we extracted inter-circuli distances from scales from 2244 recaptured fish. Spacing data for the first year at sea were collected and then expressed as seasonal growth indices for the spring period, when post-smolts first enter the ocean; the summer, when growth appears maximal; and winter, when growth appears to be at a minimum. In general, circuli spacings were wider for 1 SW than for the 2 SW returns of the same smolt cohort. The 1 SW fraction was significantly and positively correlated with late summer growth, suggesting that growth during this season is pivotal in determining the proportion of a smolt class that matures early.  相似文献   

7.
1. Pacific salmon are thought to stimulate the productivity of the fresh waters in which they spawn by fertilising them with marine‐derived nutrients (MDN). We compared the influence of salmon spawners on surface streamwater chemistry and benthic biota among three south‐eastern Alaska streams. Within each stream, reaches up‐ and downstream of barriers to salmon migration were sampled during or soon after spawners entered the streams. 2. Within streams, concentrations of dissolved ammonium and soluble reactive phosphorus (SRP), abundance of epilithon (chlorophyll a and ash‐free dry mass) and biomass of chironomids were significantly higher in reaches with salmon spawners. In contrast, biomass of the mayflies Epeorus spp. and Rhithrogena spp. was significantly higher in reaches lacking spawners. 3. Among streams, significant differences were found in concentrations of dissolved ammonium, dissolved organic carbon, nitrate and SRP, abundance of epilithon, and the biomass of chironomids and Rhithrogena. These differences did not appear to reflect differences among streams in spawner density, nor the changes in water chemistry resulting from salmon spawners. 4. Our results suggest that the ‘enrichment’ effect of salmon spawners (e.g. increased streamwater nutrient concentrations) was balanced by other concurrent effects of spawners on streams (e.g. sediment disturbance). Furthermore, the collective effect of spawners on lotic ecosystems is likely to be constrained by conditions unique to individual streams, such as temperature, background water chemistry and light attenuation.  相似文献   

8.
Seasonal occurrence of the parasitic copepod Lepeophtheirus salmonis (sea lice) was studied from March to December 2001 in two large north Norwegian sill fjords without fish farming activity, the Ranafjord and the Balsfjord. Anadromous brown trout Salmo trutta (sea trout) in both fjords had a low infestation rate during all sampling periods, but followed a seasonal pattern. During early and late winter (November to December and March to April) and spring (May to June), the prevalence varied from 0 to 25% and the abundance was <0·5 sea lice. Adults dominated (92%) during this period, particularly gravid females. In both fjords, the highest prevalence was during September (80–81%, all stages represented). In Ranafjord, the abundance and mean intensity during this month was 6·8 and 8·6 sea lice, respectively, while in Balsfjord it was 3·6 and 4·5 sea lice, respectively. Fish were captured at temperatures down to 1° C and at full strength sea water which is supposed to cause osmoregulatory problems for the fish. This observation has implications for the understanding of high‐latitude sea trout behaviour and can also make the fish more vulnerable to heavy sea lice infestation during this period. It is suggested that winter running sea trout help to maintain a self replicating local population of sea lice within such fjord systems where other possible hosts ( e.g . farmed Atlantic salmon Salmo salar ) are not present during a whole year cycle.  相似文献   

9.
The diet of repeat-spawner Atlantic salmon Salmo salar was investigated using carbon and nitrogen stable-isotope values from the outer growth band of scales, which reflect the fish's consumption and growth during their most recent marine phase. Isotope values for S. salar displaying different spawning strategies were compared between and within the Miramichi and Nashwaak Rivers, New Brunswick, Canada and a Bayesian mixing model was used to infer dietary contributions from potential prey items. Significant differences in the stable-isotope values were found among spawning strategies and between rivers, indicating differences in diet and feeding area, consistent with hypotheses. Bayesian mixing model results inferred the main prey items consumed during marine feeding by S. salar to consist of hyperiid amphipods and capelin Mallotus villosus for repeat alternate spawners from both rivers, sandlance Ammodytes sp. for repeat consecutive spawners from the Miramichi River and amphipods for repeat consecutive spawners from the Nashwaak River. These results demonstrate the diversity of feeding tactics among S. salar spawning strategies from the same river and between populations from different rivers. Accounting for differences in prey availability and the subsequent impact on S. salar diet and spawner return rates (i.e., marine survival) will facilitate the application of ecosystem-based management practices, such as ensuring that fisheries for forage species do not indirectly adversely affect S. salar return rates.  相似文献   

10.
Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host–parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources.  相似文献   

11.
  1. Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.
  2. A ten‐year‐old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils. Surface (0–10 cm) mineral soil was repeatedly measured for soil C concentration, C:N ratio, pH, moisture, and temperature in twenty‐four tree species mixtures and twelve corresponding monocultures (replicated in four blocks).
  3. Soil pH, moisture, and temperature responded to tree diversity and identity. Greater productivity in above‐ and below‐ground tree components did not increase soil C concentration. Soil pH increased and soil moisture decreased with functional diversity, more specifically, when species had different growth strategies and shade tolerances. Functional identity affected soil moisture and temperature, such that tree communities with more slow‐growing and shade‐tolerant species had greater soil moisture and temperature. Higher temperature was measured in communities with broadleaf‐deciduous species compared to communities with coniferous‐evergreen species.
  4. We conclude that long‐term soil C cycling in forest plantations will likely respond to changes in soil pH, moisture, and temperature that is mediated by tree species composition, since tree species affect these soil properties through their litter quality, water uptake, and physical control of soil microclimates.
  相似文献   

12.
Returning adult salmon caught at the mouth of the River Dee, Aberdeenshire, were transferred to tanks in the laboratory. For fish placed in fresh water, sea lice remained attached for up to 6 days, though most lice were lost in the first 48 hours. Few lice were lost from salmon maintained in sea water. The experiments were conducted in water within a temperature range of 12·8 to 16° C, equivalent to summer river temperatures in the Aberdeenshire Dee.  相似文献   

13.
14.
15.
1. Pacific salmon (Oncorhynchus spp.) deliver salmon‐derived nutrients (SDN) to the streams in which they spawn. However, many stream parameters, such as discharge and spawner abundance, can vary from year to year, which could alter the quantity and flux of SDN. 2. Over six consecutive years, we studied responses in streamwater chemistry and epilithon (i.e. the microbial community on submerged rocks) to salmon spawners in Fish Creek, southeastern Alaska, U.S.A. The lower reach of Fish Creek receives spawners of several salmon species, while the upper reach does not receive spawners because of an intervening waterfall. 3. We estimated salmon spawner biomass, analysed water chemistry [ammonium, nitrate, soluble reactive phosphorus (SRP) and dissolved organic carbon (DOC)], and measured epilithon abundance [as chlorophyll a (chl a) and ash‐free dry mass (AFDM)] in Fish Creek. Measurements were made in both the upper and lower reaches, before, during and after the major salmon runs. 4. Absolute values and relative differences indicated that the presence of salmon spawners consistently increased dissolved ammonium (by 58 μg L−1 on average, 41× over background), SRP (by 6 μg L−1, 14×), epilithon chl a (by 35 mg m−2, 16×), and epilithon AFDM (by 3 g m−2, 8×). Salmon spawners did not increase nitrate or DOC in either absolute or relative amounts. The persistence and magnitude of spawner effects varied among years and appeared to reflect weather‐driven hydrology as well as spawner biomass. 5. Salmon‐derived nutrients can stimulate the growth of primary producers by increasing streamwater nutrient concentrations, but this positive influence may be modulated by other factors, such as water temperature and discharge. To better assess the ecological influence of SDN on stream biota, future studies should explicitly consider the role of key environmental factors and their temporal and spatial dynamics in stream ecosystems.  相似文献   

16.
Pink salmon (Oncorhynchus gorbuscha) returning to Prince William Sound (PWS), Alaska, have increased to historically high levels of abundance in recent years, but average body size at return has declined. We examined how body size at return of PWS pink salmon was related to 10 biophysical factors, including the scale of hatchery production. We also examined the effect of body size at return on productivity of wild pink salmon in PWS. For the 1975–1999 brood years, we found that an index of total abundance of pink salmon in the Gulf of Alaska and sea surface temperature during the year of return best explained the variation in pink salmon body size over time. Body size at return was significantly correlated with productivity of wild pink salmon. We used stepwise-regression to fit a generalized linear version of the Ricker spawner-recruit model to determine if body size would explain significant variation in wild-stock productivity in context with other environmental variation, including hatchery production. The results indicate that variability in wild-stock productivity is primarily driven by density-independent factors in the marine environment, but that body size of wild spawners also significantly affects productivity of wild PWS pink salmon. We conclude that the success of large-scale enhancement increasing the total run in PWS may have contributed to the decline in body size because of density-dependent growth in the Gulf of Alaska. We used a simulation model to estimate the impact of hatchery-induced changes in adult body size on wild-stock production in PWS. We estimated an annual wild-stock yield loss of 1.03 million pink salmon, less than 5% of the annual hatchery return of 24.2 million adult pink salmon for brood years 1990–1999.  相似文献   

17.
  • 1.1. Immature Atlantic salmon post-smolts weighting approximately 150 g were transferred abruptly to fresh water (FW) after 5 months in sea water (SW).
  • 2.2. Losses of ions and gain of body water are reversed after 3 days with about 10–12 days taken for complete FW adaptation.
  • 3.3. Immediately on transfer from SW to FW, immature salmon take up sodium at 45 μmol/kg/hr, about one-third the rate observed in maturing salmon on their spawning migration.
  • 4.4. The sodium uptake rate increases to that of maturing salmon after 2 days in freshwater. Differences in the osmoregulatory ability of immature and maturing salmon are discussed.
  相似文献   

18.
Spawning migration timing of maiden Atlantic salmon Salmo salar and previous spawners was analysed in the catches in 1989–2004 in the large subarctic River Teno in the northernmost parts of Finland and Norway. The hypothesis was that the migration timing of previous spawners and their maiden counterparts is similar, with the migration timing similar between sexes. In most cases, however, previous spawners were observed to migrate into the River Teno and its tributaries earlier than their maiden counterparts. The difference in run timing was especially evident between maiden one-sea-winter (1SW) Atlantic salmon and the corresponding group of previous spawners [1S1, 1 year at sea (1) followed by first spawning (S) and reconditioning period of 1 year (1) at sea and second spawning run] for both sexes in the River Teno and in its two tributaries. The same was also evident between 2SW maiden and 2S1 previous spawning female Atlantic salmon in the River Teno. Females showed earlier spawning migration than males both in previous spawners and maiden Atlantic salmon. Different maiden sea-age classes also showed differences in run timing as multi-sea-winter fish (2–4SW) ascended earlier than 1SW fish but the timing of 1S1 and 2S1 previous spawning females coincided. The results suggest that run timing of Atlantic salmon may not be strictly genetically fixed as previous spawners ascend earlier than they did on their first spawning migration as maiden fish, and indicated that the closeness of the reconditioning area of postspawners to the river of origin resulted in an early ascent. Run timing of different sea-age groups has major management implications if the populations are heavily exploited with numerous fishing methods in different periods of the fishing season, as in the River Teno system.  相似文献   

19.
20.
The global increase in the production of domestic farmed fish in open net pens has created concerns about the resilience of wild populations owing to shifts in host–parasite systems in coastal ecosystems. However, little is known about the effects of increased parasite abundance on life-history traits in wild fish populations. Here, we report the results of two separate studies in which 379 779 hatchery-reared Atlantic salmon smolts were treated (or not) against salmon lice, marked and released. Adults were later recaptured, and we specifically tested whether the age distribution of the returning spawners was affected by the treatment. The estimates of parasite-induced mortality were 31.9% and 0.6% in the River Vosso and River Dale stock experiments, respectively. Age of returning salmon was on average higher in treated versus untreated fish. The percentages of fish returning after one winter at sea were 37.5% and 29.9% for the treated and untreated groups, respectively. We conclude that salmon lice increase the age of returning salmon, either by affecting their age at maturity or by disproportionately increasing mortality in fish that mature early.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号