首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The benthic environment and fauna of Lake Turkana were studied during 1978–1979 to determine distribution patterns and associations of benthic invertebrates. Lake Turkana is a large, closed-basin, alkaline lake, located in northern Kenya.Detailed environmental information is currently only available for substrate variations throughout Lake Turkana. Water chemistry and other data are currently inadequate to evaluate their effects on the distribution of Lake Turkana benthic invertebrates. Three weak faunal-substrate associations were discovered at Turkana. A littoral, soft bottom association (large standing crop) is dominated by the corixid Micronecta sp. and the ostracod Hemicypris kliei. A littoral, rocky bottom association, also with a large standing crop, is dominated by various gastropods and insects. A profundal, muddy bottom association, with a very small standing crop, is dominated by the ostracods Hemicypris intermedia and Sclerocypris cf. clavularis and several gastropod and chironomid species.  相似文献   

2.
3.
1. The objectives were (i) to determine experimentally and to model the relationship between mean water velocity and both the mean distance travelled, and the mean time spent, in the drift by freshwater shrimps, Gammarus pulex; (ii) to develop a drift distance–water velocity model from the experimental study, and validate it with field data; (iii) to examine the relationship between drift rate, water velocity and benthic density with the latter expressed as a mean value for the whole stream and a mean value corrected for the distance travelled in the drift. 2. In field experiments at 10 water velocities (0.032–0.962 m s?1), the significant relationship between the mean drift distance and mean water velocity was described both by a power function (power, 0.96) and a linear relationship. The mean drift time was fairly constant at 8.3 s (95% CL ± 0.4). A simple model estimated the drift distance and time spent in the drift by different percentages of the drifting invertebrates. This model predicted correctly the positive relationship between drift rate and water velocity for field data over a year. 3. The relationship between drift rate per hour and the independent variables, water velocity and benthic density, was well described by a multiple‐regression model. Adding temperature and date did not improve model fit. Variations in water velocity and benthic density explained 96% of the variation in nocturnal drift rate (65% to velocity, 31% to benthic density), but only 40% of the variation in diurnal drift rate (29% to velocity, 11% to benthic density). Correcting benthic density for the drift distances did not improve model fit. 4. The significance of this study is that it developed models to predict drift distances and time, values being similar to those obtained in another, larger stream. It also illustrated the importance of spatial scale in the interpretation of drift by showing that when drift distances were taken into account, the impact of drift on the population was higher (4–10% lost day?1) than when drift distances were ignored (usually < 3% lost day?1), especially at a local level.  相似文献   

4.
5.
A survey was carried out to establish the nature and composition of the benthos along the Naro Moru, a tropical river in central Kenya using artificial substrate baskets, from November 1986 to October 1987. A clear longitudinal zonation existed for Diptera and Ephemeroptera which were the major benthic taxa. Maximum colonization took place after ten days of exposure. Seasonal variations in abundance were also observed. All taxa collected from the bottom samples were also collected in the drift samples, but the percentage composition of the benthos showed variations with that of the drift. Simulium sp. dominated the benthos whilst Baetis spp. dominated the drift. There was a positive correlation between drift rate and benthic fauna density.  相似文献   

6.
N. Collins 《Hydrobiologia》1980,68(2):99-112
The population of Ephydra cinerea was studied during three summers when dissolved solids levels were about 130 g/l. All life stages are present year-round, but there is apparently some coordination of the initial pulse of adult emergence in June. There are probably 1–2 generations per year.Eggs are deposited on the water surface; inputs to three locations were similar. Larvae successfully avoid the large benthic area covered by an anaerobic monimolimnion. They tend to immigrate from substrates where they grow relatively poorly, and to remain on substrates where they grow better. Consequently, larval densities are more than ten times higher on reef and shallow water mud substrates than on sand. This marked spatial specialization in the absence of substrate-specific predators or competitors illustrates the power of habitat quality by itself in determining spatial patterns of abundance in a lake.Experiments showed larval growth on the reef was inversely related to density, and the lake as a whole produced relatively larger flies in a year when larval and pupal densities were relatively low. Yearly production by E. cinerea is roughly 50 g/m2, about 88% of which comes from reefs and shallow water mud areas covering only 18% of the bottom area.Past studies indicate that blue-green algae dominate the lake's benthic flora when salt concentrations are high (due to low lake levels), and diatoms take over when salt concentrations are low. Fly abundance appears to be inversely related to salinity.The lake's present high planktonic primary production is equal to that of eutrophic freshwater lakes, yet it has water clarity more characteristic of an oligotrophic lake. The high water clarity (which makes possible the high benthic production) probably depends on the absence of phytoplankters that can both tolerate the high salinity and avoid being eaten by Artemia salina. Continued dilution of the lake will probably upset this situation and result in reorganization of the lake's energy flow pattern.  相似文献   

7.
Hornsund is a cold-water fjord in southwestern Spitsbergen, Svalbard Archipelago, with a resident biota that exhibit typical low-temperature Arctic features. Carbon (δ13C) and nitrogen (δ15N) isotopic signatures of macrobenthic fauna and its potential food sources were measured in summer 2008 to delineate the trophic structure of the bottom community and to identify its principal carbon sources. The soft-bottom fauna at a water depth of 100 m was found to rely primarily on detritus, which is supplied by sedimentation of suspended organic matter from the water column and horizontal transport of refractory macroalgae from euphotic coastal habitats. Through resuspension by bottom currents, deposited particles also contributed to the diet of benthic filter-feeders. Since benthic organisms were significantly enriched in 13C compared to epibenthic zooplankton (mainly amphipods and decapods), the stable carbon signature provides a tool to differentiate benthic and pelagic feeding habits. The benthic food web was characterized by a conventional trophic structure with decreasing species numbers in increasing trophic levels. Primary consumers feeding on a mixture of plant matter, fecal pellets, decaying animal tissue, bacteria, and protists accounted for the greatest biomass share (62 % of the total macrobenthic biomass), followed by secondary consumers (38 %). Based on δ15N signatures, three trophic levels were detected, corresponding to the following feeding guilds: filter-feeders and feeding generalists (mainly bivalves, crustaceans, polychaetes, and some fish), mixed detritivore–carnivores (polychaetes, priapulids, crustaceans, and ophiuroids) and obligate carnivores (ascidians). The average food chain length (4.5 trophic levels) suggests that high-quality food is readily available in this Arctic fjord ecosystem.  相似文献   

8.
Sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice cover of 190 days per year. In situ, transparent and dark flux chambers were used for direct measurements of benthic fluxes of dissolved oxygen, nutrients, silica and certain metals, taking into account primary production and mineral precipitation. The range of benthic flux observed for dissolved oxygen (DO), dissolved inorganic carbon (DIC), ammonium, ortho-P, silica, calcium, and magnesium was –45.89 to 187.03, –99.32 to 50.96, –1.30 to 1.27, –0.51 to 0.39, –62.3 to 9.3, –33.82 to 16.83, and –23.93 to 7.52 mmol m–2 d–1, respectively (negative value indicating flux towards the lake bottom). Low benthic NH4 + and ortho-P fluxes were likely related to benthic algal production, and aerobic bottom water. Ortho-P fluxes could also be controlled by the dissolution/precipitation of ferrihydrite, calcite, and perhaps hydroxyapatite. The negative silica fluxes were caused by diatom frustule synthesis. Benthic calcium and magnesium fluxes could be related to algal production and dissolution/precipitation of calcium and/or Ca,Mg-carbonates. Fluxes of DO, DIC, pH and alkalinity were related to benthic biological processes. It is likely that some of the carbon precipitates as calcite at the high pH in the summer and dissolves at neutral pH in the winter. Mean of the ratio of gross benthic DIC consumption and gross benthic DO production was 0.94 ± 0.18, consistent with algal production using NH4 + as N source. During the summer weeks the water column pH remains above 10. This high pH is caused by direct and indirect utilisation of CO2, HCO3 , CO3 –2, H4SiO4 ° and H3SiO4 by primary producers. This study shows that in shallow lakes at high latitudes, where summer days are long and the primary production is mostly by diatoms, the pH is forced to very high values. The high pH could lead to a positive feedback for the Si flux, but negative feedback for the NH4 + flux.  相似文献   

9.
Synopsis We studied vertical distribution, substrate preference and food choice of brown trout, Salmo trutta, from benthic gillnet catches at four littoral sampling locations in a Norwegian hydroelectric reservoir. The sampling locations had different bottom substrates; at one location the bottom substrate consisted of sand, while at the other three, substrates consisted of stones ranging 2–5 cm, 10–30 cm and 30–150 cm in diameter, respectively. Small-sized (< 160 cm) and intermediate-size (164–269 mm) brown trout were mainly caught close to the bottom (0–0.5 m above). Small-sized brown trout were caught in the highest frequency at the location with substrate consisting of 10–30 cm large stones. Intermediate-sized brown trout were also caught in highest frequency at this location, but were also caught in a high frequency at the location with sandy substrate. In contrast, the catches of large-sized ( 270 mm) brown trout did not vary with distance from the bottom or with substrate coarseness. The most important food items for the brown trout were aquatic insects, surface insects, Eurycercus lamellatus and crustacean zooplankton, mainly Daphnia longispina, Bythotrephes longimanus, and Holopedium gibberum. In accordance with the differences in vertical distribution, benthic food was more important to small than to large brown trout. We argue that small brown trout stayed close to the bottom to reduce aggressive behaviour from larger specimens, and that small brown trout were therefore more dependent on benthic food items. We also argue that the observed differences in substrate preference between the size groups of brown trout is explained by variation in access to shelter, visual isolation between individuals and benthic feeding conditions between locations.  相似文献   

10.
Lake Hayward is a hypersaline lake that stratifies seasonally and maintains oxygen supersaturation in its bottom water for about 6 months each year. This phenomenon was found to be the result of photosynthesis by the benthic microbial communities, composed primarily of the cyanobacteria Cyanothece spp., Spirulina sp., and Oscillatoria sp. When these communities were present and the lake was stratified, the bottom water was supersaturated with oxygen (up to 370%). During illumination, the benthic microbial communities rapidly developed very high concentrations (e.g., >500 M) of oxygen, which then diffused into the overlying water. However, while the overlying water became supersaturated, the concentration in the water was lower than in the benthic microbial communities because (1) transport across the sediment-water interface was limited by diffusion, and (2) turbulence rapidly mixed the oxygen throughout the much larger volume of the bottom water (approximately 1.5 m deep). Thus, import of oxygen by the benthic microbial communities at night proceeded more slowly than daytime export, allowing supersaturation of the bottom water to develop.  相似文献   

11.
Distribution and abundance of phyto-, zooplankton and benthic organisms in Lake Qarun were investigated during the period from January 1974 to December 1977.Average number of phytoplankton cells was 152,300 cells/L and its biomass was 0.365 g/C/m3; average number of zooplankton was 31.44 × 103/m3 and its biomass was 194.19 mg/m3. The average number of benthic fauna was 19889/m2 and its biomass was 400.22 g/m2 (dry wt.). Therefore, Lake Qarun may be considered as a highly eutrophic body of water.Freshwater planktonic species, that used to inhabit the lake, such as Diaptomus salinus and the cladoceran Moina salinarum, disappeared completely when the salinity of the lake water reached 30–34 However, some Rotatoria were able to withstand the high salinity. The new composition of the zooplankton community shows that the marine zooplankton species include not only Acartia latisetosa and Cirripedia nauplii, but also other species such as Polychaeta, Obelia medusae, etc.The benthos of Lake Qarun is characterised by an intensive growth of few species. The major part (i.e. 93.54% by weight) of bottom fauna in the lake is Mollusca, mainly Cerastoderma glaucum (69·84% by weight).  相似文献   

12.
We used red shiner (Cyprinella lutrensis) as a model to examine ecosystem effects of water column stream minnows (Cyprinidae) in experimental streams. Benthic primary productivity, benthic invertebrate abundance, water column nutrient concentrations, size distribution of benthic particulate organic matter (BPOM), and sedimentation rates were measured across a range of fish densities (0–26.6 fish m–2) over a 35-day period. In addition, effects of fish density on algal standing crop and benthic invertebrates in experimental streams were examined over a longer time span (156 and 203 days). After 35 days, benthic primary productivity was positively associated with fish density, with an approximate three-fold increase in productivity between experimental streams stocked with no fish and those with 26.6 fish m–2. No effects on other ecosystem properties were detected after 35 days. Additionally, there was no effect on algal standing crop after 156 or 203 days and no effect on benthic invertebrates after 203 days. Because red shiners fed primarily on terrestrial insects, this experiment suggests that water column minnows can affect primary productivity in streams by transporting nutrients from terrestrial sources to the benthic compartment of the ecosystem. However, this effect may only be important in streams or during periods when nutrients are limiting.  相似文献   

13.
Although macrophytes are known to increase benthic diversity in lakes, the importance of this resource as food for the insects living at the bottom of these ecosystems are still poorly understood. This study assessed the diets of benthic Chironomidae and Campsurus (Ephemeroptera) in two environments: a lake with macrophytes (M+) and another without macrophytes (M?). We expected a differential use of food resources in M+, where plant tissue is particularly important for the aquatic insects’ diet. The diet of 734 individuals from 16 taxa were analyzed. Contrary to expectations, benthic insects consumed low amounts of plant tissue. This finding led us to investigate whether the presence of macrophytes in lakes would indirectly contribute to the benthic insects’ feeding, as more food resources were explored in M+ and a spatial variation of resources intake was observed in this lake, in contrast to the homogeneous feeding in M?. We highlight that macrophytes were responsible for the organic matter build‐up in the sediment, especially at the lake region dominated by these plants, and contributed to increase the deposition of high‐quality amorphous organic matter, which favored taxa in M+ that fed exclusively on this item. The lower diversity of food items exploited in M?, and the Tanypus alga‐based diet in this lake, indicates the low quality of organic resources in its sediment. Although macrophytes were indirectly beneficial for benthic insects’ feeding, we found that this is not an attractive resource for prompt ingestion by most benthic taxa.  相似文献   

14.
15.
陆晓晗  曹宸  李叙勇 《生态学报》2021,41(8):3201-3214
2018年12月-2019年10月对山东省日照市付疃河流域中下游大型底栖动物及相应水环境因子进行分季节的监测,并对底栖动物群落组成、多样性特征及与水质因子的相关性进行分析。结果表明,调查共采集底栖动物42种(环节动物14种、节肢动物20种、软体动物8种),广泛分布物种为霍甫水丝蚓(Limnodrilus hoffmeisteri)、水丝蚓属(Limnodrilus sp.)及摇蚊属(Chironomus sp.);底栖动物总密度呈春季 > 冬季 > 秋季 > 夏季;CCA (Canonical Correspondence Analysis)分析表明环节动物与COD、TP有显著正相关性,各门类与NH3-N相关性差异较大;底栖动物多样性分布特征与河流水源结构有关。采用生物多样性指标、指示物种水质生物学指标进行水质评价,Shannon-Wiener指数、Margalef指数评级偏差,Pielou指数评级偏优,而指示物种水质生物学评价(Goodnight-Whitley指数、相对重要性指数及Wright指数)基本一致,整体平均处于中污染,评价过程仍须考虑河流及物种客观属性特征,得到更具适用性的评价管理方法。  相似文献   

16.
We conducted a seasonal survey of the swimming behaviour of Chironomus acerbiphilus larvae in volcanic Lake Katanuma from April 1998 to December 2001. Swimming C. acerbiphilus density was much higher than other chironomid species in lakes. All C. acerbiphilus larvae (1st through 4th instars) swam, but the earlier instars (especially the 1st) had the greatest densities and fluctuations. First instars were never found in the benthic population. This result indicates that the 1st-instar larvae are planktonic. Low water temperature (below about 10 °C) resulted in the seasonal disappearance of swimming chironomid larvae. Chemical factors – oxygen depletion or presence of hydrogen sulfide – also restricted the distribution of swimming and benthic larvae. Larvae were distributed only in the oxygen-rich part of the lake bottom and swam only in the oxygen-rich layer of the water column. The density of older swimming C. acerbiphilus (3rd and 4th instars) tended to increase with increasing benthic larval densities. The chemical stress of oxygen depletion or presence of hydrogen sulfide during holomixis within and after the stratification period leads to conspicuous swimming behaviour of benthic C. acerbiphilus larvae. Almost all C. acerbiphilus larvae died on this occasion.  相似文献   

17.
Seasonal patterns (i.e., December 1986, and April and October 1987) in benthic macroinfaunal abundance,distribution, and taxa composition at 19 sites in Perdido Bay, AL/FL, are evaluated to assess the relative importance of environmental factors as determinants of community structure. A total of 46 taxa from five phyla were collected with diver-held bottom corers. Polychaetes were numerically dominant followed by crustaceans. Seventeen taxa co-occurred in samples during all three study periods. Maximum animal densities and taxa richness showed no statistically significant bay-wide seasonal pattern,however, a bay-wide trend was detected where these response parameters tended to be greater in April than December or October. Deeper upper bay stations were depauperate during December and October. Low dissolved oxygen (DO) largely explained the depauperate pattern. Mean taxa richness per core(10 cm dia.) ranged from 0.0 to 5.0, 1.2 to 4.6, and0.0 to 4.4 in December, April and October,respectively. Mean densities ranged from zero to 368,0 to 960, and 0 to 430 individuals per 0.1 m2 in December, April, and October, respectively. Results of a three-season statistical regression model indicated that DO deficiency was a primary determinant of taxa richness (partial R 2: 0.27) but was less important in explaining animal densities (partialR 2: 0.16). For December, when additional environmental variables were measured, DO was supplanted by weight loss on ignition (R 2: 0.24)and the sediment C:N ratio (R 2: 0.44) as highest explanatory factors for taxa richness and density,respectively. Application of a benthic index of environmental condition indicated wide-spread ecological stress on the benthic macroinfaunal assemblages. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Takeda  Alice M.  Stevaux  José C.  Fujita  Daniele S. 《Hydrobiologia》2001,463(1-3):241-248
A cross-section of the upper Paraná was studied in order to evaluate which hydraulic, sedimentary and water variables influenced on the spatial – temporal distribution and abundance of the Narapa bonettoi Righi & Varela, 1983 population. From June 1993 to February 1995, data on discharge, channel morphology, flow velocity, sediment suspended concentration and depth, water variables and benthic community were obtained. Data were analyzed by principal component analysis – PCA. The highest density of N. bonettoi occurred at the site with coarser sediments and stable bottom morphology. The lowest density was recorded at the site that presented less stable channel morphology. Temporal variation is controlled by hydrological regime and N. bonettoi cycle life whereas spatial distribution is tightly associated with channel stability.  相似文献   

19.
The aim of this study was to examine the impact of bioturbation by the Manila clam, Ruditapes philippinarum, on sediment stability. A laboratory benthic annular flume system (AFS) was deployed to evaluate the relationship between sediment stability of a subtidal mudflat and density of the infaunal clam under the influence of different current velocities. There was a significant correlation between mean erosion rate and current velocities in all treatments with clams (p < 0.001). There was also a significant correlation between mean erosion rate and R. philippinarum density (p < 0.001), reflecting bioturbation-enhanced sediment erosion. The effects of clam density on sediment erodability were more marked at the lower current velocities. In the control, the critical erosion velocity (Ūcrit) was about 32 cm s−1. With increasing R. philippinarum density, Ūcrit decreased down to the minimum value of about 20 cm s−1 at a density of 206 clams m−2. This study demonstrated that the burrowing activity of R. philippinarum reduces sediment stability, particularly at relatively low current velocities (25 cm s−1) and at densities below those found in the clam cultivation areas within the Sacca di Goro lagoon.  相似文献   

20.
Benbow  M. E.  Burky  A. J.  Way  C. M. 《Hydrobiologia》1997,346(1-3):129-135
Telmatogeton torrenticola Terry is a large endemic chironomid (lastinstar >20 mm) commonly found in high gradient Hawaiian streams on smoothrock surfaces with torrential, shallow flow and in the splash zones ofwaterfalls. We have quantified benthic water flow in larval habitat in a 50m segment of Kinihapai Stream, Maui using a thermistor-based microcurrentmeter. Under base flow conditions at sites suitable for larval attachment,depth was measured and bottom water velocity measurements were made 2 mmabove populations. Larval densities ranged from 386.9–1178m–2, habitat bottom water velocities from 13.4–64.2 cms–1, and water depths from 1.5–50 cm. Bottom velocitiesof sites with zero larvae ranged from 20.8–21.8 cm s–1with depths from 50 to >160 cm. Larval densities were greatest inareas with high bottom water velocities and shallow depths. Stepwisemultiple regression analyses showed that density could be confidentlypredicted best by Froude number (r=0.81; p=0.008). In the absence of Froudenumber as a regression term, the best variable to predict larval density wasbottom velocity ratio: relative depth ratio (r=0.75; p=0.019). In addition,the torrential habitat of the larvae was always characterized by aperiphyton community that appeared to be the primary food resource for thelarvae. These data suggest that torrential flows over appropriate substratesare important factors regulating habitat availability for T. torrenticolaand that reduced discharge (e.g. affected by water diversions) couldsignificantly reduce the amount of available habitat for this organism andother flow sensitive stream fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号