首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.  相似文献   

2.
The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.  相似文献   

3.
Wan W  Dixon JB  Gleason RL 《Biophysical journal》2012,102(12):2916-2925
Changes in the local mechanical environment and tissue mechanical properties affect the biological activity of cells and play a key role in a variety of diseases, such as cancer, arthritis, nephropathy, and cardiovascular disease. Constitutive relations have long been used to predict the local mechanical environment within biological tissues and to investigate the relationship between biological responses and mechanical stimuli. Recent constitutive relations for soft tissues consider both material and structural properties by incorporating parameters that describe microstructural organization, such as fiber distributions, fiber angles, fiber crimping, and constituent volume fractions. The recently developed technique of imaging the microstructure of a single artery as it undergoes multiple deformations provides quantitative structural data that can reduce the number of estimated parameters by using parameters that are truly experimentally intractable. Here, we employed nonlinear multiphoton microscopy to quantify collagen fiber organization in mouse carotid arteries and incorporated measured fiber distribution data into structurally motivated constitutive relations. Microscopy results demonstrate that collagen fibers deform in an affine manner over physiologically relevant deformations. The incorporation of measured fiber angle distributions into constitutive relations improves the model's predictive accuracy and does not significantly reduce the goodness of fit. The use of measured structural parameters rather than estimated structural parameters promises to improve the predictive capabilities of the local mechanical environment, and to extend the utility of intravital imaging methods for estimating the mechanical behavior of tissues using in situ structural information.  相似文献   

4.
Extracellular matrix remodelling plays an essential role in tissue engineering of load-bearing structures. The goal of this study is to model changes in collagen fibre content and orientation in soft connective tissues due to mechanical stimuli. A theory is presented describing the mechanical condition within the tissue and accounting for the effects of collagen fibre alignment and changes in fibre content. A fibre orientation tensor is defined to represent the continuous distribution of collagen fibre directions. A constitutive model is introduced to relate the fibre configuration to the macroscopic stress within the material. The constitutive model is extended with a structural parameter, the fibre volume fraction, to account for the amount of fibres present within the material. It is hypothesised that collagen fibre reorientation is induced by macroscopic deformations and the amount of collagen fibres is assumed to increase with the mean fibre stretch. The capabilities of the model are demonstrated by considering remodelling within a biaxially stretched cube. The model is then applied to analyse remodelling within a closed stented aortic heart valve. The computed preferred fibre orientation runs from commissure to commissure and resembles the fibre directions in the native aortic valve.  相似文献   

5.
6.
Characterizing compressive transient large deformation properties of biological tissue is becoming increasingly important in impact biomechanics and rehabilitation engineering, which includes devices interfacing with the human body and virtual surgical guidance simulation. Individual mechanical in vivo behaviour, specifically of human gluteal adipose and passive skeletal muscle tissue compressed with finite strain, has, however, been sparsely characterised. Employing a combined experimental and numerical approach, a method is presented to investigate the time-dependent properties of in vivo gluteal adipose and passive skeletal muscle tissue. Specifically, displacement-controlled ramp-and-hold indentation relaxation tests were performed and documented with magnetic resonance imaging. A time domain quasi-linear viscoelasticity (QLV) formulation with Prony series valid for finite strains was used in conjunction with a hyperelastic model formulation for soft tissue constitutive model parameter identification and calibration of the relaxation test data. A finite element model of the indentation region was employed. Strong non-linear elastic but linear viscoelastic tissue material behaviour at finite strains was apparent for both adipose and passive skeletal muscle mechanical properties with orthogonal skin and transversal muscle fibre loading. Using a force-equilibrium assumption, the employed material model was well suited to fit the experimental data and derive viscoelastic model parameters by inverse finite element parameter estimation. An individual characterisation of in vivo gluteal adipose and muscle tissue could thus be established. Initial shear moduli were calculated from the long-term parameters for human gluteal skin/fat: G(∞,S/F)=1850 Pa and for cross-fibre gluteal muscle tissue: G(∞,M)=881 Pa. Instantaneous shear moduli were found at the employed ramp speed: G(0,S/F)=1920 Pa and G(0,M)=1032 Pa.  相似文献   

7.
Intrinsic opacity and inhomeogeniety of most biological tissues have prevented the efficient light penetration and signal detection for high-resolution confocal imaging of thick tissues. Here, we summarize recent technical advances in high-resolution confocal imaging for visualization of cellular structures and gene expression within intact whole-mount thick tissues. First, we introduce features of the FocusClear technology that render biological tissue transparent and thus improve the light penetration and signal detection. Next, a universal fluorescence staining method that labels all nuclei and membranes is described. We then demonstrate the postrecording image processing techniques for 3D visualization. From these images, regions of interest in the whole-mount brain can be segmented and volume rendered. Together, these technical advances in confocal microscopy allow visualization of structures within whole-mount tissues up to 1mm thick at a resolution similar to that of the observation of single cells in culture. Practical uses and limitations of these techniques are discussed.  相似文献   

8.
Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used, these parameters cannot be linked to the microstructure. However, when the constitutive model is derived from a microstructural representation of the material, it allows for the possibility of inferring the local averages of the spatial distribution of the microstructural parameters. This idea forms the basis of this study. In particular, we first derive a constitutive model by homogenizing the mechanical response of a network of elastic, tortuous fibers. Thereafter, we use this model in an inverse problem to determine the spatial distribution of the microstructural parameters. We solve the inverse problem as a constrained minimization problem and develop efficient methods for solving it. We apply these methods to displacement fields obtained by deforming gelatin–agar co-gels and determine the spatial distribution of agar concentration and fiber tortuosity, thereby demonstrating that it is possible to image local averages of microstructural parameters from macroscopic measurements of deformation.  相似文献   

9.
Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components.  相似文献   

10.
Tissue engineering is a multidisciplinary field that combines engineering, physical sciences, biology, and medicine to restore or replace tissues and organs functions. In this review, enabling tools for tissue engineering are discussed in the context of four key areas or pillars: prediction, production, performance, and preservation. Prediction refers to the computational modeling where the ability to simulate cellular behavior in complex three-dimensional environments will be essential for design of tissues. Production refer imaging modalities that allow high resolution, non-invasive monitoring of the development and incorporation of tissue engineered constructs. Lastly, preservation includes biochemical tools that permit cryopreservation, vitrification, and freeze-drying of cells and tissues. Recent progress and future perspectives for development in each of these key areas are presented.  相似文献   

11.
Nonlinear optical imaging techniques have been widely used to reveal biological structures for accurate diagnosis at the cellular as well as the tissue level. In the present study, polarization‐dependent second‐harmonic generation (PSHG) was used to determine collagen orientation in breast cancer biopsy tissues (grades 0, I, II and III). The obtained data were processed using fast Fourier transform (FFT) analysis, while second‐harmonic generation (SHG) anisotropy and the “ratio parameter” values were also calculated. Such measurements were shown to be able to distinguish collagen structure modifications in different cancer grades tested. The analysis presented herein suggests that PSHG imaging could provide a quantitative evaluation of the tumor state and the distinction of malignant from benign breast tissues. The obtained results also allowed the development of a biophysical model, which can explain the aforementioned differentiations and is in agreement with the simulations relating the SHG anisotropy values with the mechanical tension applied to the collagen during cancer progression. The current approach could be a step forward for the development of new, nondestructive, label free optical diagnostic tools for cancer reducing the need of recalls and unnecessary biopsies, while potentially improving cancer detection rates.  相似文献   

12.
Light sheet fluorescence microscopy (LSFM) functions as a non-destructive microtome and microscope that uses a plane of light to optically section and view tissues with subcellular resolution. This method is well suited for imaging deep within transparent tissues or within whole organisms, and because tissues are exposed to only a thin plane of light, specimen photobleaching and phototoxicity are minimized compared to wide-field fluorescence, confocal, or multiphoton microscopy. LSFMs produce well-registered serial sections that are suitable for three-dimensional reconstruction of tissue structures. Because of a lack of a commercial LSFM microscope, numerous versions of light sheet microscopes have been constructed by different investigators. This review describes development of the technology, reviews existing devices, provides details of one LSFM device, and shows examples of images and three-dimensional reconstructions of tissues that were produced by LSFM.  相似文献   

13.
Urinary incontinence can be surgically treated by means of artificial sphincters, based on a cuff that provides a pressure around the urethra to occlude the lumen. Considering the frequent access of elderly patients to this surgical practice, tissue degradation phenomena must be investigated, since they could affect treatment reliability and durability. The potential degradation can be interpreted considering a variation within soft tissue constitutive formulation, by means of a correlation between mechanical properties and tissues ageing. The overall compressibility varies, as characteristics aspect of soft tissue mechanical response with age, as well as the stiffness. The investigation is performed by means of a three dimensional numerical model of the urethral duct. The effects of the interaction phenomenon with a cuff is interpreted considering the changes, within the constitutive models, of the basic parameters that define the potential degradation process. The deformation related to compressibility is recalled, ranging between ten and fifty percent in dependence on the degradation level considered. This parameter, reported mostly as representative of the aging effect, shows a large variation that confirms the relevance of the investigation performed toward a sensitivity of the mechanical response of the urethral duct referred to the lumen occlusion.  相似文献   

14.
The periodontal ligament (PDL), as other soft biological tissues, shows a strongly non-linear and time-dependent mechanical response and can undergo large strains under physiological loads. Therefore, the characterization of the mechanical behavior of soft tissues entails the definition of constitutive models capable of accounting for geometric and material non-linearity. The microstructural arrangement determines specific anisotropic properties. A hyperelastic anisotropic formulation is adopted as the basis for the development of constitutive models for the PDL and properly arranged for investigating the viscous and damage phenomena as well to interpret significant aspects pertaining to ordinary and degenerative conditions. Visco-hyperelastic models are used to analyze the time-dependent mechanical response, while elasto-damage models account for the stiffness and strength decrease that can develop under significant loading or degenerative conditions. Experimental testing points out that damage response is affected by the strain rate associated with loading, showing a decrease in the damage limits as the strain rate increases. These phenomena can be investigated by means of a model capable of accounting for damage phenomena in relation to viscous effects. The visco-hyperelastic-damage model developed is defined on the basis of a Helmholtz free energy function depending on the strain-damage history. In particular, a specific damage criterion is formulated in order to evaluate the influence of the strain rate on damage. The model can be implemented in a general purpose finite element code. The accuracy of the formulation is evaluated by using results of experimental tests performed on animal model, accounting for different strain rates and for strain states capable of inducing damage phenomena. The comparison shows a good agreement between numerical results and experimental data.  相似文献   

15.
The interplay of mechanical forces transduces diverse physico-biochemical processes to influence lung morphogenesis, growth, maturation, remodeling and repair. Because tissue stress is difficult to measure in vivo, mechano-sensitive responses are commonly inferred from global changes in lung volume, shape, or compliance and correlated with structural changes in tissue blocks sampled from postmortem-fixed lungs. Recent advances in noninvasive volumetric imaging technology, nonrigid image registration, and deformation analysis provide valuable tools for the quantitative analysis of in vivo regional anatomy and air and tissue-blood distributions and when combined with transpulmonary pressure measurements, allow characterization of regional mechanical function, e.g., displacement, strain, shear, within and among intact lobes, as well as between the lung and the components of its container-rib cage, diaphragm, and mediastinum-thereby yielding new insights into the inter-related metrics of mechanical stress-strain and growth/remodeling. Here, we review the state-of-the-art imaging applications for mapping asymmetric heterogeneous physical interactions within the thorax and how these interactions permit as well as constrain lung growth, remodeling, and compensation during development and following pneumonectomy to illustrate how advanced imaging could facilitate the understanding of physiology and pathophysiology. Functional imaging promises to facilitate the formulation of realistic computational models of lung growth that integrate mechano-sensitive events over multiple spatial and temporal scales to accurately describe in vivo physiology and pathophysiology. Improved computational models in turn could enhance our ability to predict regional as well as global responses to experimental and therapeutic interventions.  相似文献   

16.
17.
Novel applications in rehabilitation, surgery and tissue engineering require the knowledge of the mechanical behaviour of the tissues at microstructural level. The aim of this work is to investigate the viscoelastic properties of the tendon from the interaction of its biological constituents in the fibrillar network. Traction, relaxation and creep in-vitro tests have been performed on porcine flexor digital tendons. A viscoelastic constitutive equation at finite deformation is presented. The fibrillar deformation modes are described through a network of adaptive links between collagen type I and decorin. The theoretical predictions fit accurately the experimental data. The results of the model demonstrate the mechanical importance of glycosaminoglycan chains of decorin for the differential recruitment and the activation of fibrillar collagen.  相似文献   

18.
Molecular imaging methods allow the noninvasive detection and localization of specific molecules. Agents that report on molecular disease biomarkers can be used to diagnose and monitor disease. Many inflammatory diseases have molecular signatures within altered tissues. Although tissue biopsy is still the gold standard for detecting these signatures, several molecular imaging markers have been developed. Pharmacologic agents that block specific immune molecules have recently entered the clinic, and these drugs have already transformed the way we care for patients with immune-mediated diseases. The use of immunomodulatory drugs is usually guided by clinical assessment of the patient's response. Unfortunately, clinical assessment may miss the signs of inflammation, and many of the serologic markers of immune-mediated diseases correlate poorly with the underlying inflammatory activity within target tissues. Molecular imaging methods have the potential to improve our ability to detect and characterize tissue inflammation. We discuss some of the molecular signatures of immune activation and review molecular imaging methods that have been developed to detect active tissue inflammation.  相似文献   

19.
20.
As the interaction between tissue adaptation and the mechanical condition within tissues is complex, mathematical models are desired to study this interrelation. In this study, a mathematical model is presented to investigate the interplay between collagen architecture and mechanical loading conditions in the arterial wall. It is assumed that the collagen fibres align along preferred directions, situated in between the principal stretch directions. The predicted fibre directions represent symmetrically arranged helices and agree qualitatively with morphometric data from literature. At the luminal side of the arterial wall, the fibres are oriented more circumferentially than at the outer side. The discrete transition of the fibre orientation at the media-adventitia interface can be explained by accounting for the different reference configurations of both layers. The predicted pressure-radius relations resemble experimentally measured sigma-shaped curves. As there is a strong coupling between the collagen architecture and the mechanical loading condition within the tissue, we expect that the presented model for collagen remodelling is useful to gain further insight into the processes involved in vascular adaptation, such as growth and smooth muscle tone adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号