首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Villin is an actin-binding protein of the intestinal brush border that bundles, nucleates, caps, and severs actin in a Ca(2+)-dependent manner in vitro. Villin induces the growth of microvilli in transfected cells, an activity that requires a carboxyl-terminally located KKEK motif. By combining cell transfection and biochemical assays, we show that the capacity of villin to induce growth of microvilli in cells correlates with its ability to bundle F-actin in vitro but not with its nucleating activity. In agreement with its importance for microfilament bundling in cells, the KKEK motif of the carboxyl-terminal F-actin-binding site is crucial for bundling in vitro. In addition, substitutions of basic residues in a second site, located in the amino-terminal portion of villin, impaired its activity in cells and reduced its binding to F-actin in the absence of Ca(2+) as well as its bundling and severing activities in vitro. Altogether, these findings suggest that villin participates in the organization and stabilization of the brush border core bundle but does not initiate its assembly by nucleation of actin filaments.  相似文献   

2.
Villin is a major protein of the microfilament bundle which makes up the core of each microvillus of the brush border of the intestinal epithelial cell. Using antibodies to villin in indirect immunofluorescence microscopy on isolated cells and on frozen tissue sections, the protein is readily detectable in the microvilli of the brush border of both intestinal and renal epithelial cells. However, villin could not be detected in tissue culture cells either by immunofluorescence microscopy or by immune replica procedures. When native villin was microinjected into such cells and its distribution visualized by immunofluorescence microscopy, the protein was found to be associated with microfilamentous structures. Moreover, preferential association of the villin into the microfilaments at the leading edges of the living cell was observed. Since villin behaves in vitro as a calcium-regulated F-actin bundling protein, we discuss the possibility that villin is immunologically distinct but functionally related to putative calcium-regulatory factors assumed to be present in cultured cells.  相似文献   

3.
The intestinal epithelial cell brush border exhibits distinct localizations of the actin-binding protein components of its cytoskeleton. The protein interactions that dictate this subcellular organization are as yet unknown. We report here that tropomyosin, which is found in the rootlet but not in the microvillus core, can bind to and saturate the actin of isolated cores, and can cause the dissociation of up to 30% of the villin and fimbrin from the cores but does not affect actin binding by 110-kD calmodulin. Low speed sedimentation assays and ultrastructural analysis show that the tropomyosin-containing cores remain bundled, and that 110-kD calmodulin remains attached to the core filaments. The effects of tropomyosin on the binding and bundling activities of villin were subsequently determined by sedimentation assays. Villin binds to F-actin with an apparent Ka of 7 X 10(5) M-1 at approximate physiological ionic strength, which is an order of magnitude lower than that of intestinal epithelial cell tropomyosin. Binding of villin to F-actin presaturated with tropomyosin is inhibited relative to that to pure F-actin, although full saturation can be obtained by increasing the villin concentration. Villin also inhibits the binding of tropomyosin to F-actin, although not to the same extent. However, tropomyosin strongly inhibits bundling of F-actin by villin, and bundling is not recovered even at a saturating villin concentration. Since villin has two actin-binding sites, both of which are required for bundling, the fact that tropomyosin inhibits bundling of F-actin under conditions where actin is fully saturated with villin strongly suggests that tropomyosin's and one of villin's F-actin-binding sites overlap. These results indicate that villin and tropomyosin could compete for actin filaments in the intestinal epithelial cell, and that tropomyosin may play a major role in the regulation of microfilament structure in these and other cells.  相似文献   

4.
Villin, a calcium-regulated actin-binding protein, modulates the structure and assembly of actin filaments in vitro. It is organized into three domains, the first two of which are homologous. Villin is mainly produced in epithelial cells that develop a brush border and which are responsible for nutrient uptake. Expression of the villin structural gene is precisely regulated during mouse embryogenesis and is restricted in adults, to certain epithelia of the gastrointestinal and urogenital tracts. The function of villin has been assessed by transfecting CV1 cells with a human cDNA encoding wild-type villin or mutant villin. Synthesis of large amounts of villin in cells which do not normally produce this protein induces the growth of microvilli on the cell surface and the redistribution of F-actin, concomitant with the disappearance of stress fibers. The complete villin sequence is required for the morphogenic effect. These results suggest that villin plays a key role in the morphogenesis of microvilli.  相似文献   

5.
Villin is a major actin-bundling protein in the brush border of epithelial cells. In this study we demonstrate for the first time that villin can bundle actin filaments using a single F-actin binding site, because it has the ability to self-associate. Using fluorescence resonance energy transfer, we demonstrate villin self-association in living cells in microvilli and in growth factor-stimulated cells in membrane ruffles and lamellipodia. Using sucrose density gradient, size-exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight, the majority of villin was identified as a monomer or dimer. Villin dimers were also identified in Caco-2 cells, which endogenously express villin and Madin-Darby canine kidney cells that ectopically express villin. Using truncation mutants of villin, site-directed mutagenesis, and fluorescence resonance energy transfer, an amino-terminal dimerization site was identified that regulated villin self-association in parallel conformation as well as actin bundling by villin. This detailed analysis describes for the first time microvillus assembly by villin, redefines the actin-bundling function of villin, and provides a molecular mechanism for actin bundling by villin, which could have wider implications for other actin cross-linking proteins that share a villin-like headpiece domain. Our study also provides a molecular basis to separate the morphologically distinct actin-severing and actin-bundling properties of villin.  相似文献   

6.
Summary Brush cells represent a population of epithelial cells with unknown function, which are scattered throughout the epithelial lining of both the respiratory system and the alimentary system. These cells are reliably distinguished from other epithelial cells only at the ultrastructural level by the presence of an apical tuft of stiff microvilli and extremely long microvillar rootlets that may project down to the perinuclear space. In the present study we show that brush cells can be identified in tissue sections even at the light microscopic level by immunostaining with antibodies against villin and fimbrin, two proteins that crosslink actin filaments to form bundles. In brush cells, villin and fimbrin are not only present in the actin filament core bundles of apical microvilli and their long rootlets but, in addition, both proteins are also associated with microvilli extending from the basolateral cell surface of the brush cells. Basolateral immunostaining specific for villin and fimbrin does not occur in any other epithelial cell type of the respiratory and alimentary tract. Thus immunostaining with antibodies against both proteins allows unequivocal identification of individual brush cells even in sectional planes that do not contain the brightly stained apical tuft of microvilli and their long rootlets.  相似文献   

7.
The microvillus cytoskeleton, isolated from chicken intestinal epithelial cell brush borders, is known to contain five major protein components, the 110,000-dalton polypeptide, villin (95,000 daltons), fimbrin (68,000 daltons), actin (43,000 daltons), and calmodulin (17,000 daltons). In this paper we describe our first step in studying the minor components of the isolated core. We have so far identified and purified an 80,000-dalton polypeptide that was present in the isolated structure in approximately 0.7% the molar abundance of actin. Antibodies to the 80,000-dalton component did not react with other microvillus core proteins, and, when used in indirect immunofluorescence microscopy, they stained the microvilli of intestinal epithelial cells fixed in situ. The 80,000-dalton component therefore appears to be a newly-identified, authentic component of intestinal microvilli in vivo and of isolated microvillus cores. Immunological studies demonstrate that the 80,000-dalton component is widely distributed in nonmuscle cells. Indirect immunofluorescence microscopy reveals that it is particularly enriched in surface structures, such as blebs, microvilli, and retraction fibers of cultured cells.  相似文献   

8.
Transfected CV1 cells were used to compare the in vivo effects of various domains of villin and gelsolin. These two homologous actin modulating proteins both contain a duplicated severin-like sequence. Villin has in addition a carboxy-terminal domain, the headpiece, which accounts for its bundling activity. The effects of the villin-deleted mutants were compared with those of native villin. Our results show that essential domains of villin required to induce the growth of microvilli and F-actin redistribution are present in the first half of the core and in the headpiece. We also show that the second half of the villin core cannot be exchanged by its homolog in gelsolin. When expressed at high levels of CV1 cells, full length gelsolin completely disrupted stress fibers without change of the cell shape. Addition of the villin headpiece to gelsolin had no effect on the phenotype induced by gelsolin alone. Expression of the first half of gelsolin induced similar modifications as capping proteins and rapid cell mortality; this deleterious effect on the cell structure was also observed when the headpiece was linked to the first half of gelsolin. In cells expressing the second half of gelsolin, a dotted F-actin staining was often seen. Moreover elongated dorsal F-actin structures were observed when the headpiece was linked to the second gelsolin domain. These studies illustrate the patent in vivo severing activity of gelsolin as well as the distinct functional properties of villin core in contrast to gelsolin.  相似文献   

9.
The cores of the microvilli present on intestinal epithelial cells are currently the only microfilament arrangement which can be isolated ultrastructurally intact and in sufficient quantities for biochemical analysis. We have isolated and characterized villin, a major protein of the microvillus core. Using villin's ability to bind very tightly to immobilized monomeric actin in a calcium-dependent manner, we have developed a method for its rapid purification by affinity chromatography on G actin, which itself was bound to immobilized pancreatic deoxyribonuclease I (DNAase I). The villin-G actin complex on DNAase I is resistant to high ionic strength, and villin, but not actin, is released when the calcium concentration is less than 106 M. Purified villin behaves as a globular monomeric protein of molecular weight 95,000, and is free of carbohydrate. Villin also interacts with F actin. In the absence of calcium, villin cross-links F actin having the properties of an F actin bundling or gelation factor. In the presence of calcium (>10?7 M), villin apparently restricts the polymerization of actin to short filaments which cannot be readily sedimented. The properties of villin are not compatible with its previously suggested role as the cross-filament between the microvillus microfilament core and the plasma membrane, but rather indicate a function as a calcium-dependent F actin-bundling protein. The role of villin is discussed in terms of the other protein components of the microvillus core and in relation to recently described calcium-dependent gelation factors.  相似文献   

10.
Villin is a calcium-regulated actin-binding protein that caps, severs, and bundles actin filaments in vitro. This 92,500-D protein is a major constituent of the actin bundles within the microvilli of the brush border surface of intestinal and kidney proximal tubule cells. Villin is a very early marker of cells involved in absorption and its expression is highly increased during intestinal cell differentiation. The amino acid sequence deduced from the cDNA sequence revealed that human villin is composed of three domains. The first two domains appear as the result of a duplication: their structural organization is similar. We can then define a basic unit in which a slightly hydrophilic motif is followed by three hydrophobic motifs, similar between themselves and regularly spaced. The duplicated domain is highly homologous to three other actin-severing proteins and this basic structure represents the whole molecule in severin and fragmin, while two basic units compose gelsolin. The third domain which is carboxy terminal is villin specific: it is unique among actin modulating proteins so far known. It could account for its actin-binding properties (dual regulation by calcium of severing and bundling activities). We propose that it may also be related to the subcellular localization of villin in different epithelial cell types.  相似文献   

11.
Villin plays a key role in the maintenance of the brush border organization by bundling F-actin into a network of parallel filaments. Our previous in vivo data on villin knockout mice showed that, although this protein is not necessary for the bundling of F-actin, it is important for the reorganization of the actin cytoskeleton elicited by stress conditions. We further investigated villin property to initiate actin remodeling in cellular processes such as hepatocyte growth factor-induced motility, morphogenesis, and bacterial infection. Our data suggest that villin is involved in actin remodeling necessary for many cellular processes requiring the actin cytoskeleton plasticity.  相似文献   

12.
Fimbrin, previously recognized as a major structural protein of the microfilament core bundles of intestinal epithelial cell microvilli, has been purified to homogeneity and characterized. It is a nearly globular monomeric protein of apparent molecular weight 68,000 and has a single calcium binding site (Kd = 9 microM), for which magnesium ions compete. Fimbrin binds to F-actin and this interaction is characterized in detail. Under our optimal binding of conditions, fimbrin induces tightly packed F-actin bundles, similar to the bundles induced by villin, another microvillus structural protein. The formation of mixed fimbrin-villin-actin bundles provides a further step toward the full in vitro reconstitution of microvillus core filaments from its purified individual components. The reconstituted fimbrin-villin-actin bundles do not display the side arms characteristic of isolated microvillus cores. These results are discussed in terms of our current understanding of the organization of the microvillus core filaments and indicate that this structure contains two bundling proteins, villin and fimbrin. The results complement previous studies and now provide a minimal biochemical characterization of all four major actin-associated structural proteins so far identified in core filaments. Three of these (villin, fimbrin, and calmodulin) are calcium-binding proteins, emphasizing the concept of calcium control over submembranous microfilament organization.  相似文献   

13.
The vomeronasal organ (VNO) of the mammal nose is specialized to detect pheromones. The presumed site of the chemosensory signal transduction of pheromones is the vomeronasal brush border of the VNO sensory epithelium, which has been shown to contain two different sets of microvilli: (i) the tall microvilli of supporting cells and (ii) the short microvilli of the chemoreceptive VNO neurons that branch and intermingle with the basal portions of the longer supporting cell microvilli. A key problem when studying the subcellular distribution of possible VNO signal transduction molecules at the light microscope level is the clear discrimination of immunosignals derived from dendritic microvilli of the VNO neurons and surrounding supporting cell structures. In the present study we therefore looked for cytoskeletal marker proteins, that might help to distinguish at the light microscope level between the two sets of microvilli. By immunostaining we found that the VNO dendritic microvilli can be selectively labelled with antibodies to the calcium-sensitive actin filament-bundling protein villin, whereas supporting cell microvilli contain the actin filament cross-linking protein fimbrin, but not villin. Useful cytoplasmic marker molecules for cellular discrimination were cytokeratin 18 for supporting cells and β-tubulin for dendrites of VNO neurons. A further finding was that the non-sensory epithelium of the rat VNO contains brush cells, a cell type that appears to be involved in certain aspects of chemoreception in the gut. Brush cells or other structures of the vomeronasal brush border did not contain α-gustducin.  相似文献   

14.
Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery.  相似文献   

15.
Microfilament interactions with the plasma membranes of animal cells appear to vary with cell type and localization. In the erythrocyte, actin oligomers are associated with the membrane via spectrin and ankyrin. The ends of stress fibers in cultured cells, such as fibroblasts, are attached to the plasma membrane at focal adhesion sites and may involve the protein vinculin as a linking protein. In intestinal brush border microvilli a 110,000 dalton protein links the microfilament bundles to sites on the microvillus. A transmembrane complex containing actin stably associated with a cell surface glycoprotein can be isolated from ascites tumor cell microvilli and can be obtained still associated with microfilaments by gentle extraction and gradient centrifugation of the microvilli. These varied interaction mechanisms are believed to be needed to satisfy the different structural and dynamic requirements of the particular systems.  相似文献   

16.
Using a Mg2+ rather than the standard Ca2+ precipitation method microvillus membrane vesicles of porcine intestinal epithelial cells with a relatively well preserved cytoskeleton are obtained. Such vesicles are long and relatively straight and retain some of the core filament structure typical of non-vesicularized microvilli. They are therefore a good starting material for the purification of mammalian F-actin bundling proteins. We have purified the two previously predicted bundling proteins villin and fimbrin from such preparations and show that in most but not all aspects they resemble their counterparts in chicken microvilli. The now documented F-actin severing activity of purified porcine villin explains the easy vesicularization of porcine microvilli in the traditional Ca2+ precipitation method.  相似文献   

17.
Summary Human pancreatic tissue was investigated by immunohistochemistry using a polyclonal antibody against the actin binding protein villin, which participates in the formation of actin filament bundles in the microvilli. In cells of the different parts of the pancreatic duct system as well as in the acinar cells villin immunoreactivity was located mainly at the apical cell surface. This was confirmed by the ultrastructural demonstration of microvilli on the surface of duct and acinar cells, which exhibited the typical actin bundles. In chronic pancreatitis the staining for villin in duct-like structures of degenerative pancreatic tissue was irregular or even absent. This correlated with the electron microscopic observation of duct-like structures known as tubular complexes composed of cells devoid of microvilli at the apical cell surface. At the light microscopical level degenerative structures without lumen and of unknown origin showed a strong staining for villin at their basal cell surface.  相似文献   

18.
Human pancreatic tissue was investigated by immunohistochemistry using a polyclonal antibody against the actin binding protein villin, which participates in the formation of actin filament bundles in the microvilli. In cells of the different parts of the pancreatic duct system as well as in the acinar cells villin immunoreactivity was located mainly at the apical cell surface. This was confirmed by the ultrastructural demonstration of microvilli on the surface of duct and acinar cells, which exhibited the typical actin bundles. In chronic pancreatitis the staining for villin in duct-like structures of degenerative pancreatic tissue was irregular or even absent. This correlated with the electron microscopic observation of duct-like structures known as tubular complexes composed of cells devoid of microvilli at the apical cell surface. At the light microscopical level degenerative structures without lumen and of unknown origin showed a strong staining for villin at their basal cell surface.  相似文献   

19.
The apical surface of transporting epithelia is specially modified to absorb nutrients efficiently by amplifying its surface area as microvilli. Each microvillus is supported by an underlying core of bundled actin filaments. Villin and fimbrin are two actin-binding proteins that bundle actin filaments in the intestine and kidney brush border epithelium. To better understand their function in the assembly of the cytoskeleton during epithelial differentiation, we examined the pattern of villin and fimbrin expression in the developing mouse using immunofluorescence and immunoelectron microscopy. Villin is first detected at day 5 in the primitive endoderm of the postimplantation embryo and is later restricted to the visceral endoderm. By day 8.5, villin becomes redistributed to the apical surface in the visceral endoderm, appearing in the gut at day 10 and concentrating in the apical cytoplasm of the differentiating intestinal epithelium 2-3 days later. In contrast, fimbrin is found in the oocyte and in all tissues of the early embryo. In both the visceral endoderm and gut epithelium, fimbrin concentrates at the apical surface 2-3 days after villin; this redistribution occurs when the visceral endoderm microvilli first contain organized microfilament bundles and when microvilli first begin to appear in the gut. These results suggest a common mechanism of assembly of the absorptive surface of two different tissues in the embryo and identify villin as a useful marker for the visceral endoderm.  相似文献   

20.
The present study addressed the question as to whether the four different actin-associated proteins that are associated with the actin core bundle in intestinal microvilli (i.e. villin, fimbrin, myosin I and ezrin) are essential components of all microvilli of the body. The retina provides an excellent example of a tissue supplied with three different sets of microvilli, namely those of Müller's glial cells (Müller baskets), photoreceptors (calycal processes), and pigment epithelial cells. The main outcome of this study is that none of these microvilli contain all four actin-associated proteins present in intestinal microvilli. Müller cell microvilli contain villin, ezrin and myosin I (95 kDa isoform) but not fimbrin. Calycal processes of photoreceptors contain fimbrin but not villin, myosin I and ezrin. Finally, microvilli of pigment epithelial cells are positive for ezrin but not for villin, fimbrin and myosin I. Beoause of limited cross-reactivities of the antibodies to myosin I and ezrin, the myosin I data refer to the chicken retina whereas the findings with anti-ezrin were obtained with the rat retina. A further outcome of this study is that the actin filament core bundles in microvilli of chicken pigment epithelial cells are presumed to contain a crosslinking protein, which is not immunologically related to either villin, fimbrin or myosin I of the intestinal brush border.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号