首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whale sharks, Rhincodon typus, seasonally aggregate in coastal waters off Ningaloo Reef, Western Australia. We review the oceanographic setting of the region and present evidence that such aggregations form as a result of migratory behavior associated with climatic and oceanographic processes. We utilise records of whale shark abundance collected at Ningaloo Reef from dedicated searches by boat and aircraft and from log sheets recorded by the tourism industry. Measures of whale shark abundance derived from log sheet data sets were moderately correlated with the Southern Oscillation Index and weakly correlated with coastal sea level, an index of the strength of the Leeuwin Current, and sea surface temperature over the period 1993 to 1998. Abundances of whale sharks derived from boat searches from 1983 to 1992 were also correlated with fluctuations in the Southern Oscillation Index, except during a three year period from 1988 to 1990. We conclude that, at least in some years, there appears to be a link between the abundance of aggregating whale sharks and the physical and biological oceanography of the region, with greater whale shark numbers in La Niña years. The lack of correlation in other years may be due to a combination of uneven quality of data and/or aggregations occurring in response to a complex interaction between the physical and biological oceanography of the region.  相似文献   

2.
A review of the biology and ecology of the whale shark   总被引:4,自引:0,他引:4  
The information available on the biology and ecology of the whale shark is reviewed, and is updated from material published since 1986. Research work carried out on the seasonal aggregation of whale sharks at the Ningaloo Reef in Western Australia is summarized. Future research studies on whale sharks in the Ningaloo Marine Park are discussed in the context of management of sustainable whale shark interaction tourism.  相似文献   

3.
Seven whale sharks were tracked using satellite-linked tags from Ningaloo Reef, off northern Western Australia, following tagging in April and June 2002 and April-May 2005. We investigated how the movements of those whale shark tracks were influenced by geostrophic surface currents during sequential one-week periods by using a passive diffusion model parameterised with observed starting locations of the sharks and weekly maps of surface current velocity and direction (derived from altimetry). We compared the outputs from the passive diffusion model and maps of chlorophyll-a concentration (SeaWiFs/MODIS) and with the actual tracks of the sharks using GIS and generalized linear mixed-effects models (GLMM). The GLMM indicated very little support for passive diffusion with sea-surface ocean currents influencing whale shark distributions in the north eastern Indian Ocean. Moreover, the sharks' movements correlated only weakly with the spatial distribution of sea-surface chlorophyll-a concentrations. The seven whale sharks had average swimming speeds comparable with those recorded in other satellite tracking studies of this species. Swimming speeds of the seven sharks were similar to those reported in previous studies and up to three times greater than the maximum sea-surface current velocities that the sharks encountered while traversing into lower southerly latitudes (moving northward towards the equator). Our results indicate that whale sharks departing from Ningaloo travel actively and independently of near-surface currents where they spend most of their time despite additional metabolic costs of this behaviour.  相似文献   

4.
In-water viewing of sharks by tourists has become a popular and lucrative industry. There is some concern that interactions with tourists with ecotourism operations might harm sharks through disruption of behaviours. Here, we analysed five years of whale shark (Rhincodon typus) encounter data by an ecotourism industry at Ningaloo Reef, Western Australia, to assess the impact of ecotourism interactions on shark visitation, within the context of the biological and physical oceanography of the region. Our data base consisted of 2823 encounter records for 951 individual whale sharks collected by ecotourism operators between 2007 and 2011. We found that total encounters per whale shark and encounters per boat trip increased through time. On average, whale sharks re-encountered in subsequent years were encountered earlier, stayed longer and tended to be encountered more often within a season than sharks that were only encountered in a single year. Sequential comparisons between years did not show any patterns consistent with disturbance and the rate of departure of whale sharks from the aggregation was negatively correlated to the number of operator trips. Overall, our analysis of this multi-year data base found no evidence that interactions with tourists affected the likelihood of whale shark re-encounters and that instead, physical and biological environmental factors had a far greater influence on whale shark visitation rates. Our approach provides a template for assessing the effects of ecotourism interactions and environmental factors on the visitation patterns of marine megafauna over multiple years.  相似文献   

5.
Whale sharks Rhincodon typus were monitored via acoustic transmitters at the northern end of Western Australia's Ningaloo Marine Park to establish the extent to which the species inhabits the region beyond the whale‐shark ecotourism industry season, which usually extends from March to August in each year. Despite the vast majority (c. 98%) of photographic submissions of R. typus from Ningaloo Reef being between March and August, acoustic detections from the tagged R. typus at Ningaloo were recorded in all months of the year, but do not preclude the occurrence of extended absences. It is concluded that as a species, R. typus occurs year round at Ningaloo, where it generally remains in close proximity to the reef edge, but that some individuals move outside of the detection range of the array for extended periods.  相似文献   

6.
The seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March–August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions.  相似文献   

7.
This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo‐Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea‐level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial‐scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo‐Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales.  相似文献   

8.
The recruitment of yellowfin tuna in the eastern Pacific Ocean is modeled based on oceanographic as well as biological parameters, using two nonlinear autoregressive network models with exogenous inputs (NARX). In the first model (Model 1) the quarterly recruitment is modeled considering eastern Pacific global oceanographic conditions: the Southern Oscillation Index (SOI), the Pacific Decadal Oscillation (PDO), and spawners biomass. In Model 2, recruitment is predicted based on sea surface temperature, wind magnitude, and oceanic current magnitude of a smaller area within the eastern Pacific Ocean, considered as relevant for spawning and recruitment, and total spawners biomass. The correlation coefficient between the ANN recruitment estimate and the “real” recruitment is r > 0.80 in both models. Series of sensitivity analysis suggest that the SOI and the sea surface temperature are the most important variables for the recruitment in Model 1 and Model 2 also show that warm sea surface favors recruitment. A forecasting model under different climatological scenarios indicates that the recruitment of yellowfin tuna could be higher in the period 2015–2020 compared to the ones registered in the period 2009–2013.  相似文献   

9.
This study recorded the scarring rate and severity for whale sharks Rhincodon typus from three Indian Ocean aggregations (Australia, Seychelles and Mozambique), and examined whether scarring (mostly attributed to boat strikes and predator attacks) influences apparent survival rates using photo‐identification libraries. Identifications were based on spot‐and‐stripe patterns that are unique to individual whale sharks. Scarring was most prevalent in the Seychelles aggregation (67% of individuals). Predator bites were the most frequent source of scarring (aside from minor nicks and abrasions) and 27% of individuals had scars consistent with predator attacks. A similar proportion of whale sharks had blunt trauma, laceration and amputation scars, the majority of which appeared to be caused by ship collisions. Predator bites were more common (44% of individuals) and scars from ship collisions were less common at Ningaloo Reef than at the other two locations (probability of among‐site differences occurring randomly = 0·0007 based on a randomized multinomial contingency analysis). In all aggregations, scars occurred most often on the caudal fin, which may result from the fin being the body part closest to the surface when boats pass over, or they may provide a large target for predator attack. No evidence was found for an effect of scarring on apparent survival (φ; mean ±s .e .) for the Ningaloo (not scarred φ= 0·858 ± 0·033; scarred φ= 0·929 ± 0·033) or Seychelles populations (not scarred φ= 0·502 ± 0·060; scarred φ= 0·538 ± 0·070). The lower apparent survival of the Seychelles population may be attributed to a high number of transient whale sharks in this aggregation that might bias estimates. This study indicates that while scarring from natural predators and smaller vessels appears to be unrelated to whale shark survival, the effect of deaths related to ship strike need to be quantified to assist in future management of this species.  相似文献   

10.
1. Precise estimates of demographic rates are key components of population models used to predict the effects of stochastic environmental processes, harvest scenarios and extinction probability. 2. We used a 12-year photographic identification library of whale sharks from Ningaloo Reef, Western Australia to construct Cormack-Jolly-Seber (CJS) model estimates of survival within a capture-mark-recapture (CMR) framework. Estimated survival rates, population structure and assumptions regarding age at maturity, longevity and reproduction frequency were combined in a series of age-classified Leslie matrices to infer the potential trajectory of the population. 3. Using data from 111 individuals, there was evidence for time variation in apparent survival (phi) and recapture probability (p). The null model gave a phi of 0.825 (95% CI: 0.727-0.893) and p = 0.184 (95% CI: 0.121-0.271). The model-averaged annual phi ranged from 0.737 to 0.890. There was little evidence for a sex effect on survival. 4. Using standardized total length as a covariate in the CMR models indicated a size bias in phi. Ignoring the effects of time, a 5-m shark has a phi = 0.59 and a 9 m shark has phi = 0.81. 5. Of the 16 model combinations considered, 10 (63%) indicated a decreasing population (lambda < 1). For models based on age at first reproduction (alpha) of 13 years, the mean age of reproducing females at the stable age distribution (A) ranged from 15 to 23 years, which increased to 29-37 years when alpha was assumed to be 25. 6. All model scenarios had higher total elasticities for non-reproductive female survival [E(s(nr))] compared to those for reproductive female survival [E(s(r))]. 7. Assuming relatively slow, but biologically realistic, vital rates (alpha = 25 and biennial reproduction) and size-biased survival probabilities, our results suggest that the Ningaloo Reef population of whale sharks is declining, although more reproductive data are clearly needed to confirm this conclusion. Combining relatively precise survival estimates from CMR studies with realistic assumptions of other vital rates provides a useful heuristic framework for determining the vulnerability of large oceanic predators for which few direct data exist.  相似文献   

11.
Sharks segregate by sex and size, but few studies have attempted to explain such behaviors. To address this, we examined aggregations and the foraging ecology of whale sharks in Bahía de La Paz (BLP) with aerial and ship surveys and direct observation. Zooplankton abundance and composition, and hydrographic conditions were analyzed in relation to whale shark occurrence to explore underlying factors causing segregations. We observed large aggregations of juveniles (<9 m total length, TL) inshore, comprised by 60 % male individuals, and small aggregations of adults (>9 m TL) offshore, composed of 84 % females. Juvenile sharks were associated to turbid shallow waters in BLP, where they performed stationary and dynamic suction feeding on dense copepod swarms. Adults occurred in oceanic waters and fed by ram-filtering on diffuse patches of euphausiids, with no association to oceanographic conditions. Such segregation may be advantageous to juvenile R. typus utilizing shallow coastal waters to find abundant preferred prey needed for their fast growth rates. Our studies suggest that the main driving forces of whale shark segregation by sex and size in BLP may be diet preference for juveniles and habitat preference for adult sharks.  相似文献   

12.
Although southern sea otters (Enhydra lutris nereis) are not considered prey for white sharks (Carcharodon carcharias), sharks do nonetheless bite sea otters. We analyzed spatial and temporal trends in shark bites on sea otters in California, assessing the frequency of shark bite wounds in 1,870 carcasses collected since 1985. The proportion of stranded sea otters having shark bites has increased sharply since 2003, and white shark bites now account for >50% of recovered carcasses. The trend was most pronounced in the southern part of the range, from Estero Bay to Point Conception, where shark bite frequency has increased eightfold. Seasonal trends were also evident: most shark‐bitten carcasses are recovered in late summer and fall; however, the period of elevated shark bite frequency has lengthened. The causes of these trends are unclear, but possible contributing factors include increased white shark abundance and/or changes in white shark behavior and distribution. In particular, the spatiotemporal patterns of shark‐bitten sea otters match increases in pinniped populations, and the increased availability of marine mammal prey for white sharks may have led to more sharks spending more time in nearshore waters utilized by both sea otters and pinnipeds.  相似文献   

13.
Aim Predicting distribution patterns of whale sharks (Rhincodon typus, Smith 1828) in the open ocean remains elusive owing to few pelagic records. We developed multivariate distribution models of seasonally variant whale shark distributions derived from tuna purse‐seine fishery data. We tested the hypotheses that whale sharks use a narrow temperature range, are more abundant in productive waters and select sites closer to continents than the open ocean. Location Indian Ocean. Methods We compared a 17‐year time series of observations of whale sharks associated with tuna purse‐seine sets with chlorophyll a concentration and sea surface temperature data extracted from satellite images. Different sets of pseudo‐absences based on random distributions, distance to shark locations and tuna catch were generated to account for spatiotemporal variation in sampling effort and probability of detection. We applied generalized linear, spatial mixed‐effects and Maximum Entropy models to predict seasonal variation in habitat suitability and produced maps of distribution. Results The saturated generalized linear models including bathymetric slope, depth, distance to shore, the quadratic of mean sea surface temperature, sea surface temperature variance and chlorophyll a had the highest relative statistical support, with the highest percent deviance explained when using random pseudo‐absences with fixed effect‐only models and the tuna pseudo‐absences with mixed‐effects models (e.g. 58% and 26% in autumn, respectively). Maximum Entropy results suggested that whale sharks responded mainly to variation in depth, chlorophyll a and temperature in all seasons. Bathymetric slope had only a minor influence on the presence. Main conclusions Whale shark habitat suitability in the Indian Ocean is mainly correlated with spatial variation in sea surface temperature. The relative influence of this predictor provides a basis for predicting habitat suitability in the open ocean, possibly giving insights into the migratory behaviour of the world’s largest fish. Our results also provide a baseline for temperature‐dependent predictions of distributional changes in the future.  相似文献   

14.
Understanding the ecological factors that regulate elasmobranch abundance in nearshore waters is essential to effectively manage coastal ecosystems and promote conservation. However, little is known about elasmobranch populations in the western South Atlantic Ocean. An 8-year, standardized longline and drumline survey conducted in nearshore waters off Recife, northeastern Brazil, allowed us to describe the shark assemblage and to monitor abundance dynamics using zero-inflated generalized additive models. This region is mostly used by several carcharhinids and one ginglymostomid, but sphyrnids are also present. Blacknose sharks, Carcharhinus acronotus, were mostly mature individuals and declined in abundance throughout the survey, contrasting with nurse sharks, Ginglymostoma cirratum, which proliferated possibly due to this species being prohibited from all harvest since 2004 in this region. Tiger sharks, Galeocerdo cuvier, were mostly juveniles smaller than 200 cm and seem to use nearshore waters off Recife between January and September. No long-term trend in tiger shark abundance was discernible. Spatial distribution was similar in true coastal species (i.e. blacknose and nurse sharks) whereas tiger sharks were most abundant at the middle continental shelf. The sea surface temperature, tidal amplitude, wind direction, water turbidity, and pluviosity were all selected to predict shark abundance off Recife. Interspecific variability in abundance dynamics across spatiotemporal and environmental gradients suggest that the ecological processes regulating shark abundance are generally independent between species, which could add complexity to multi-species fisheries management frameworks. Yet, further research is warranted to ascertain trends at population levels in the South Atlantic Ocean.  相似文献   

15.
Aerial surveys have been used to estimate population abundance of both terrestrial and marine species; in the marine environment this has largely been used for air-breathing species that spend time regularly at the surface. Whale sharks spend a large proportion of their time close to the surface and so are amenable to aerial survey techniques. This study presents the results of six years of synoptic aerial belt-surveys done nearly daily during the peak whale shark season around the island of Mahe, Seychelles. A total of 580 survey flights were flown providing 699.7 hours of survey record. A seasonal peak of shark sightings per hour was recorded in September or October in most years with the maximum on a single survey of 28.4 h- 1 in October 2006. The aerial survey data were used to generate an estimate of relative population abundance indicating that highest mean annual relative population estimate was also in 2006, with an estimate of 38, while the lowest mean estimate was 11 in 2004. These estimates were then compared to weekly capture-mark-recapture estimates of abundance based on unique individual identification data. The results indicate that the use of aerial survey data alone may give an acceptable indication of instantaneous relative population abundance but further refinement is necessary to estimate absolute regional abundance.  相似文献   

16.
The whale shark is an endangered species that usually feeds in coastal areas of highly productive seas such as the Gulf of California, Mexico. This study aims to describe the effect of sea surface temperature, chlorophyll a, bathymetry and slope on the habitat suitability of whale sharks in three important aggregation sites of the Gulf of California. A total of 2396 records of occurrence of whale sharks were obtained from international databases and scientific literature between 1996 and 2018. These records were used for the creation of a species distribution model using MaxEnt for each of the three aggregation sites. The concentration of chlorophyll a explained 71% of the habitat suitability, followed by bathymetry and slope with a combined 17%, and sea surface temperature constituting 10% of the model. Habitat suitability was related to areas where nontargeted fisheries may impact whale sharks through bycatch, entanglement and ship strikes. The implications for the conservation of whale sharks should be considered for management decisions in terms of marine protected areas, fishing refugees or bans, and other regulations regarding fisheries activities.  相似文献   

17.
Whale shark (Rhincodon typus, Smith, 1828) is an endangered species with anthropogenic pressures due to increasing demand of encounter tourism activities. Research efforts to identify management and conservation strategies for this species are needed. The Northern Mexican Caribbean is one of the most important feeding aggregation sites of whale sharks worldwide. In this study, Mexican Caribbean whale shark feeding habits are assessed by means of fatty acid (FA) signature analysis, a biochemical non-destructive technique widely applied in trophic ecology studies. Sub-dermal tissue biopsies of 68 whale sharks and samples of their potential prey (zooplankton) were collected during 2010 and 2011 in two areas with high R. typus abundance. Zooplankton samples (n?=?17) were divided in two categories: mixed zooplankton (several groups of zooplankton) and fish eggs (> 95% of sample components were fish eggs). FA profiles of whale shark tissue sampled between years showed significant variability; while there was no intraspecific differences in FA signature related to sex, size and location. FA profiles of whale sharks and their potential prey were dominated by saturated fatty acids (SFA). R. typus FA signature was significantly different from that of mixed zooplankton; on the other hand, whale shark and fish egg FA profiles formed groups with overlapping values and registered high levels of oleic acid. PUFA average ω3/ ω6 ratio on whale shark FA profiles for both years was below 1. Arachidonic acid (ARA) percentage was higher in whale shark biopsies (13.2% in 2010, 6.8% in 2011) compared to values observed in fish eggs (2.0%) and mixed zooplankton (1.4%). Similarity between FA profiles of whale sharks and fish eggs, low levels of bacterial FA found in R. typus biopsies, as well as whale shark feeding behavior observations in the study area, suggest that R. typus is feeding mainly on surface zooplankton in Mexican Caribbean; however, elevated ARA percentages in whale shark samples may indicate that this species has complementary feeding sources, such as demersal zooplankton, which has been reported in other aggregation sites. Results obtained contribute to the knowledge of the whale shark trophic ecology in the area, but are inconclusive. Further studies are recommended to evaluate whale shark FA profiles from different tissues (muscle or blood); also, broader information is needed about zooplankton FA signature in the study area.  相似文献   

18.
We used satellite-linked radio telemetry to document the geographic and vertical movements and thermal habitats of whale sharks in the Sea of Cortez and as they migrated into the north Pacific Ocean. Of 17 sharks tagged between 1994 and 1996, six dispersed widely in the Sea of Cortez during 12–39 days of tracking. Four others left the Sea of Cortez and ranged extensively in the north Pacific Ocean. Indeed, one whale shark migrated to the western north Pacific Ocean, covering over 13000km in 37 months of tracking. The sharks generally occupied areas where sea surface water temperatures were between 28 and 32°C, though several ranged to depths of 240m or deeper where water temperature reached 10°C or colder. Whale sharks may segregate by size and sex, and their movement patterns appear to be related to oceanographic features, such as sea mounts and boundary currents, where primary productivity may be enhanced. These results have important implications for the global conservation of the world's largest yet least known fish. We think that satellite telemetry is a exceptionally promising tool for learning more about the ecology of whale sharks, especially when combined with conventional methods of telemetry and molecular biology.authorship arranged alphabetically  相似文献   

19.
The whale shark (Rhincodon typus) is an endangered marine fish species which can be adversely affected by the fishing activities of the industrial purse seine fleet targeting tropical tuna. Tuna tend to aggregate around all types of floating objects, including whale sharks. We analyzed and modeled the spatial distribution and environmental preferences of whale sharks based on the presence and absence data from fishing observations in the Atlantic Ocean. We used a thorough multialgorithm analysis, based on a new presence–absence dataset, and endeavored to follow the most recent recommendations on best practices in species distribution modeling. First, we selected a subset of relevant variables using a generalized linear model that addressed multicollinearity, statistical errors, and information criteria. We then used the selected variables to build a model ensemble including 19 different algorithms. After eliminating models with insufficient performance, we assessed the potential distribution of whale sharks using the mean of the predictions of the selected models. We also assessed the variance among the predictions of different algorithms, in order to identify areas with the highest model consensus. The results show that several coastal regions and warm shallow currents, such as the Gulf Stream and the Canary and Benguela currents, are the most suitable areas for whale sharks under current environmental conditions. Future environmental projections for the Atlantic Ocean suggest that some of the suitable regions will shift northward, but current concentration areas will continue to be suitable for whale shark, although with less productivity, which could have negative consequences for conservation of the species. We discuss the implications of these predictions for the conservation and management of this charismatic marine species.  相似文献   

20.
Pacific sleeper sharks Somniosus pacificus were captured near Steller sea lion Eumetopias jubatus rookeries during the period when Steller sea lion pups are most vulnerable to Pacific sleeper shark predation (first water entrance and weaning). Analysis of stomach contents revealed that teleosts were the dominant prey in August and cephalopods were the dominant prey in May ( n = 198). Marine mammals were found in 15% of stomachs regardless of season, but no Steller sea lion tissues were detected. Molecular genetic analysis identified grey whale Eschrichtius robustus and harbour seal Phoca vitulina remains in some Pacific sleeper shark stomachs. Most mammals were cetacean and at least 70% of the cetaceans were probably scavenged. Although Pacific sleeper shark and Steller sea lion ranges overlapped, so predation could potentially occur, the diet study suggested that predation on Steller sea lions is unlikely, at least when pups first enter the water or during weaning. Harbour seals were infrequent prey and may have been consumed alive. Pacific sleeper sharks consume fast-swimming prey like Pacific salmon Oncorhynchus sp., most likely live animals rather than scavenged animals. Pacific sleeper sharks appeared to be opportunistic consumers of the available prey and carrion, feeding both on the bottom and in the water column, and their diet shifted to teleosts and cetacean carrion as the fish grew larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号