首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Erosion and transport of juvenile individuals may alter the distribution pattern of intertidal bivalves. The burrowing success of recently transported juvenile softshell clams (Mya arenaria) was studied in a laboratory flume under a wide range of hydrosedimentary environments. Juvenile individuals (5-20 mm) were observed under a simulated 30 min slack tide before initiating the flow for a period of 60 min. Five different free-stream velocities (0, 3, 5, 10 and 24 cm s− 1) and four sediment types (mud, sandy-mud, sand and gravel) were used. The mean proportion of juvenile clams that initiated (MPI) or completed (MPC) a burial decreased with increasing shell length. Erosion from the sediment was more important in large juveniles suggesting that large juveniles may have more difficulty successfully relocating once transported. The MPI increased with increasing flow speed in experimental runs held at speed < 24 cm s− 1. This was observed in all sediment types. Most individuals were unable to burrow at 24 cm s− 1 because they got eroded. The MPC also increased with increasing flow speed in mud, sandy-mud and sand. The MPC's response to flow was more complex in gravel because of a shell length × flow speed interaction effect. Our observations suggest that water movement may induce the burrowing behaviour of recently eroded juvenile clams. Results are discussed in an ecological and aquacultural context.  相似文献   

2.
Predation appears to be the single most important biotic factor regulating populations of bivalves in estuarine and coastal soft sediments. However, the relative roles of predation and intraspecific competition are rarely investigated simultaneously over different spatial scales, making generalities about these mechanisms difficult. Using juveniles of the soft-shell clam, Mya arenaria (initial mean shell length [SL] ± 95% CI = 12.4 ± 0.13 mm), I tested the interactive effects of predator deterrence and intraspecific density (660 vs. 1320 individuals m− 2) on growth and survival responses over a 185-day period from May to November 2003 at spatial scales that spanned four orders of magnitude: embayments, sites within embayments, tidal gradients, and blocks that were 10,000's, 1000's, 100's, and 5 m apart, respectively. Replicate field experiments were conducted from May to November 2003 at the upper and lower tidal heights at each of two intertidal mud flats (sites) within each of two embayments (Passamaquoddy Bay [PB] and Cobscook Bay [CB]) in eastern Maine.Mean survival, relative growth, and the abundance of wild recruits each varied significantly over all spatial scales. Predation was the most important factor affecting clam survival, explaining 45% of the total variability, whereas embayment, sites within embayments, tidal gradient, and intraspecific density collectively accounted for less than 10% of the variation. At all four intertidal sites, clam survival in experimental units designed to deter predators averaged 72%, but the degree of enhancement varied between embayments (PB = 61%; CB = 267%). Average survival rate was higher (by 12-16%), but growth was slower (by ca. 50%) in upper vs. lower intertidal blocks; however, the patterns differed for both variables between sites within each embayment. The effect of increasing intraspecific clam density was to lower survival by ca. 17% (56% [660 m− 2] vs. 48% [1320 m− 2]) in both embayments, but growth was unaffected. Overall, clams doubled in SL, although mean relative growth was 15% greater in CB than PB. Tidal gradient, sites within embayments, and blocks were the three most important factors explaining 35%, 19%, and 22% of total variation in relative clam growth, respectively. In Maine and the northeast US, juveniles of Mya reach their highest abundance above mean low tide levels. Experimental evidence presented here suggests that differential predation along the tidal gradient is the dominant factor controlling clam abundance and distribution patterns in the intertidal zone.  相似文献   

3.
4.
Host-pathogen interaction models in aquatic species are useful tools for understanding the pathogenicity of diseases in cultured and wild populations. In this study we report the differential in vivo response of soft-shell clam (Mya arenaria) hemocytes against two strains of Vibrio splendidus. Responses were measured 24 h after injecting into the posterior adductor muscle either an endemic wild-type strain (7SHRW) or a strain associated with oyster mortalities (LGP32-GFP). Changes in hemocyte structure (percentage of rounded cells) were assessed microscopically. Changes in adherence and hemocyte numbers were analyzed by flow-cytometric cell counting. Increased percentages of rounded cells were found in response to both strains. However, values from the group infected with LGP32-GFP were significantly higher (p < 0.01) than with 7SHRW. The cell adherence was markedly diminished (p < 0.001) by LGP32-GFP whereas 7SHRW did not change it significantly. Increased numbers of hemocytes (p < 0.001) were induced by LGP32-GFP, while no significant changes were found after infection with 7SHRW. These results show the regulatory capacity of soft-shell clams hemocytes to perform specific responses against different strains of V. splendidus.  相似文献   

5.
The erosion and transport of juvenile softshell clams (Mya arenaria) was studied in a laboratory flume in relation to free-stream velocity (0, 7, 16, 29 and 35 cm s− 1), shell length (0-5, 5-10, 10-15, 15-20 mm) and type of sediment (mud, sandy-mud, sand and gravel). Our results showed that these factors interact together on the erosion of clams from the sediment. Juveniles were eroded in great numbers in sand while mud retained them more easily. Bedload transport was initiated at speeds of 16 cm s− 1. Most of the clams were eroded in sandy sediments at speeds of 29 and 35 cm s− 1. The smallest individuals were highly vulnerable to erosion compared to the other size classes studied. A results-based model using the logistic regression statistics was proposed. This allowed the estimation of erosion probabilities for a given hydrosedimentary environment. A field validation of the model was then carried out. Field results confirmed the importance of free-stream velocity, shell length and type of sediment on the erosion rate of clams. The differences observed between predicted and field results suggest that the model underestimated the erosion rate in the field. Results are discussed in the context of hydrosedimentary environments found off the eastern coast of Canada.  相似文献   

6.
The chemical composition of bivalve shells can reflect that of their environment, making them useful indicators of climate, pollution, and ecosystem changes. However, biological factors can also influence chemical properties of biogenic carbonate. Understanding how these factors affect chemical incorporation is essential for studies that use elemental chemistry of carbonates as indicators of environmental parameters. This study examined the effects of bivalve shell growth rate and age on the incorporation of elements into juvenile softshell clams, Mya arenaria. Although previous studies have explored the effects of these two biological factors, reports have differed depending on species and environmental conditions. In addition, none of the previous studies have examined growth rate and age in the same species and within the same study. We reared clams in controlled laboratory conditions and used solution-based inductively coupled plasma mass spectrometry (ICP-MS) analysis to explore whether growth rate affects elemental incorporation into shell. Growth rate was negatively correlated with Mg, Mn, and Ba shell concentration, possibly due to increased discrimination ability with size. The relationship between growth rate and Pb and Sr was unresolved. To determine age effects on incorporation, we used laser ablation ICP-MS to measure changes in chemical composition across shells of individual clams. Age affected incorporation of Mn, Sr, and Ba within the juvenile shell, primarily due to significantly different elemental composition of early shell material compared to shell accreted later in life. Variability in shell composition increased closer to the umbo (hinge), which may be the result of methodology or may indicate an increased ability with age to discriminate against ions that are not calcium or carbonate. The effects of age and growth rate on elemental incorporation have the potential to bias data interpretation and should be considered in any biogeochemical study that uses bivalves as environmental indicators.  相似文献   

7.
Nonindigenous species are increasingly recognized as altering marine and estuarine communities, causing significant changes in abundance and distribution of native species. Such effects are of particular concern to coastal fisheries. We experimentally determined the effect of the nonindigenous European green crab, Carcinus maenas, upon the stepped venerid clam, Katelysia scalarina, the basis for a fledgling clam fishery in Tasmania, Australia. First, we observed a trend of decreased juvenile (<13-mm shell length or SL) abundance of K. scalarina at sites with C. maenas relative to those without this invasive predator. Additionally, relative predation intensity on these juveniles was significantly higher in invaded areas. To better understand the dynamics of predation by this invader, we conducted a number of manipulative experiments. In cage experiments testing per capita predation rates, we found that: (1) of the various sizes of C. maenas, large C. maenas were the most significant predators; (2) the smallest size class of K. scalarina tested (6-12-mm SL) was preferred by C. maenas; (3) C. maenas had much higher predation rates than any native predator tested; and (4) while the native shore crab, Paragrapsus gaimardii, was found to have a constant predation rate over an eightfold range of densities of juvenile K. scalarina (16-128 individuals·m−2), C. maenas significantly increased its per capita predation with increasing prey density. Notably, in open field plots at a site where C. maenas was abundant, predation was constant over the range of tested prey densities. We predict, therefore, that the invasion of C. maenas will have significant negative consequences for the Tasmanian K. scalarina fishery.  相似文献   

8.
The ability of prey to detect and adequately respond to predation risk influences immediate survival and overall fitness. Chemical cues are commonly used by prey to evaluate risk, and the purpose of this study was to elicit the nature of cues used by prey hunted by generalist predators. Nucella lapillus are common, predatory, intertidal snails that evaluate predatory risk using chemical cues. Using Nucella and a suite of its potential predators as a model system, we explored how (1) predator type, (2) predator diet, and (3) injured conspecifics and heterospecifics influence Nucella behavior. Using laboratory flumes, we determined that Nucella responded only to the invasive green crab (Carcinus maenas), the predator it most frequently encounters. Nucella did not respond to rock crabs (Cancer irroratus) or Jonah crabs (Cancer borealis), which are sympatric predators but do not frequently encounter Nucella because these crabs are primarily subtidal. Predator diet did not affect Nucella responses to risk, although starved predator response was not significantly different from controls. Since green crabs are generalist predators, diet cues do not reflect predation risk, and thus altering behavior as a function of predator diet would not likely benefit Nucella. Nucella did, however, react to injured conspecifics, a strategy that may allow them to recognize threats when predators are difficult to detect. Nucella did not react to injured heterospecifics including mussels (Mytilus edulis) and herbivorous snails Littorina littorea, suggesting that they are responding to chemical cues unique to their species. The nature of cues used by Nucella allows them to minimize costs associated with predator avoidance.  相似文献   

9.
The molecular mechanisms by which haemocytes of clams are transformed in the course of haemic neoplasia remain by far unknown. The aim of this study was to quantify the expression of p53/p73 and mortalin genes, in relation with the ploidy status of clam haemocytes and to correlate the p53 expression with mortalin expression. For this purpose, soft-shell clams, Mya arenaria, were collected from an endemic zone for neoplasia. The ploidy of haemocytes was assessed for each individual clam by flow cytometry using a propidium iodide protocol, while p53/p73 and mortalin gene expressions were quantified by real-time RT-PCR. Results show that haemocytes of some clams with a moderate percentage (15-50%) of tetraploid cells have a significantly high level of p53 and p73 in comparison with clams belonging to categories with low (<15%) or high levels (>50%) of tetraploid cells, where low levels of expression of these genes were observed. Furthermore, mortalin gene expression is strongly correlated (r2 = 0.68, p < 0.01) with p53 gene expression level. This reinforces the hypothesis of a cytoplasmic p53 sequestration mechanism in clam haemic neoplasia. Further studies are needed to confirm these preliminary results and further unravel the molecular pathways involved in this process. Our results are believed to provide phenotypic foundation for such studies to be undertaken.  相似文献   

10.
Predation on the early life history of fish is an important factor regulating year-class strength. Verifying predation events, however, is difficult when analyses rely on visually identifying the remnants of partially digested fish in the stomachs of suspected predators. The objective of this study was to assess the utility of using immunological assays to detect the presence of winter flounder eggs and juveniles (Pseudopleuronectes americanus) in the gut contents of sand shrimp (Crangon septemspinosa) and green crab (Carcinus maenas). After defining assay capabilities, the stomach contents of field-collected shrimp and crabs were examined to determine if these predator-prey relationships occur under natural conditions. Winter flounder-specific antisera developed and used in this study successfully identified homologous antigens (egg or juvenile flounder extracts) without appreciably cross-reacting with antigenic material from predators or nontarget prey. Moreover, antisera detected flounder eggs 10.8-16.4 h after initial feeding by various sized shrimp, and identified juvenile flounder 9.4 and 7.8 h after initial ingestion by shrimp and crabs, respectively. Immuonological dietary analysis of decapod crustaceans collected from Niantic River, Connecticut, revealed that C. septemspinosa and C. maenas are potentially important predators on the early life stages of winter flounder. The temporal trends and magnitude of flounder predator-induced mortality was affected primarily by the spatial and temporal overlap between predator and prey (egg mortality), and the size-dependent relationships underlying crustacean and flatfish predator-prey interactions (juvenile mortality).  相似文献   

11.
The responses of the burrowing bivalves Macoma balthica and Cerastoderma edule to chemical cues emitted by feeding shore crabs Carcinus maenas were investigated. M. balthica held in the laboratory and exposed to chemical signals in effluent water discharging from tanks containing C. maenas fed 20 M. balthica day− 1 reacted by increasing their burial depths from approximately 30 mm to depths of > 60 mm, over a period of several days. When the signal was removed the bivalves gradually returned to their original depth over 5 days. C. edule similarly exposed to effluent from crabs feeding on conspecifics showed no response. In an attempt to identify the signal inducing this burrowing response, M. balthica were exposed to a variety of chemical signals. Crabs fed M. balthica elicited the strongest response, followed by crabs fed C. edule. There were also small responses to effluent from crabs fed on fish, crabs previously fed on M. balthica and to crab faeces, but no responses to starved crabs, crushed M. balthica, or controls. We conclude that increased burrowing depth of M. balthica is induced by some as yet unidentified chemical cue produced by feeding crabs and is strongest when the crabs were fed on M. balthica. Unexpectedly, neither the presence of crabs themselves, nor of damaged conspecifics, was effective in eliciting a burrowing response. The mortality rates of M. balthica and C. edule selected by crabs when burrowed at normal depths and after exposure to effluent from feeding crabs were different. Crabs selected 1.5 times more C. edule than M. balthica when both species were burrowed at their normal depths, but 15 times more after the tanks had been exposed to effluent from feeding crabs for 5 days. The burrowing response of M. balthica thus appears to reduce mortality significantly by displacing predation pressure on to the more accessible C. edule.  相似文献   

12.
13.
Invasive organisms have the potential for competition with native organisms. In the Southern Gulf of St. Lawrence, juvenile American lobsters have a potential spatial overlap with adult green crabs. Crustaceans use agonistic behaviour to settle disputes, with the larger organism often winning contests for limited resources such as food and shelter. Two experiments were carried out using adult green crabs (53-76 mm carapace width) and juvenile American lobsters (28-57 mm carapace length). The first experiment used a limited food resource. We found that green crabs were the first to the food in all trials, fed in significantly more trials than lobsters and spent a significantly greater proportion of time with the food. The lobsters were only able to displace the green crabs from the food in 2 of 65 attempts. The second experiment was designed to examine shelter competition; unexpectedly some predation by green crabs on lobsters occurred, which allowed us to test hypotheses about how relative size and shelter use affect predation. Green crabs captured and consumed juvenile lobsters in 6 of 11 trials. The lobsters that survived spent significantly more time in shelter. There was no clear relationship between shelter use and size of lobster. The lobsters that were larger in relation to the green crabs suffered a higher rate of predation, which we believe was due to more conspicuous activity and less use of shelter. It appears that green crabs have the potential to negatively impact native juvenile lobster.  相似文献   

14.
The invasive green crab, Carcinus maenas, has recently expanded its range into the Southern Gulf of St. Lawrence, where there is potential for substantial niche overlap with juvenile American lobsters, Homarus americanus. We used two experiments to elicit, record and analyze the agonistic interactions of adult green crabs (carapace width of 63-75 mm) and sub-adult (carapace length of 55-70 mm) lobsters. The first experiment gave each animal equal access to a limited food resource. The green crabs were first to the food in significantly more trials, spent a significantly greater proportion of time with the food, and were able to successfully defend the food from attacks by the heavier lobsters. In the second experiment, we allowed the lobsters to gain possession and initiate feeding on the food before releasing the green crabs. In these trials, the lobsters spent significantly more time with the food, and were able to defend the food from the green crabs. The results of both experiments are discussed in the context of game theory. The different behaviour of the crustaceans in the two experiments is consistent with the “bourgeois” strategy in a hawk and dove game simulation. With this strategy, an animal acts like a hawk if in possession of a resource, but acts like a dove if the other animal is in possession of the resource. The fact that the green crabs were able to physically compete with, and in many cases dominate the larger, heavier lobsters supports the potential for competitive impacts of green crabs on sub-adult lobsters.  相似文献   

15.
The Atlantic rock crab, Cancer irroratus, is a commercially fished species and a critical prey item for the American lobster, Homarus americanus, in Atlantic Canada. The recent invasion of European green crab, Carcinus maenas, may have significant effects on the growth and condition of native C. irroratus, because both species overlap spatially and temporally and have similar habitat and dietary requirements. To examine such potential effects, we measured the growth of juvenile C. irroratus in the presence of juvenile C. maenas over a period of 4 months (growing season), under the following species combinations: (1) one C. irroratus (10-25 mm CW); (2) two C. irroratus (10-25 mm CW); (3) one C. irroratus (10-25 mm CW) and one C. maenas (10-15 mm CW). Morphological measurements included pre- and post-molt carapace width, chela height, abdomen width (mm), weight (g), and estimates of molt increment (%) and intermolt duration (days). Analysis of the hepatopancreas for % lipid content at the end of the experiment provided an estimate of physiological condition. The effect of the presence of C. maenas on the growth of C. irroratus shifted from negative to positive, when C. irroratus reached CW of 19-22 mm and gained a presumably significant size advantage over C. maenas. The positive effect resulted from increased energy intake through crab consumption. In the absence of crab consumption, the presence of a second crab (conspecific or C. maenas) had no effect on growth. C. irroratus consumed crabs more frequently when the second individual was a green crab than a conspecific. Consumption of C. maenas had a pronounced effect on the growth rate of C. irroratus, resulting in shorter intermolt periods and larger percent molt increments than in the presence of a conspecific. Therefore, the presence of juvenile C. maenas does not appear to have a prolonged negative effect on the growth of C. irroratus; rather, it may provide an additional food item as rock crabs grow, as long as encounters between the two species occur at high enough rates.  相似文献   

16.
The bivalve Macoma balthica is a common species in the Wadden Sea and North Sea. Juveniles temporarily use nurseries in the high intertidal. To explain this nursery use, predation pressure was examined for both juvenile and adult Macoma at low and high tidal flats. The study was carried out in the eastern Dutch Wadden Sea.Shrimps Crangon crangon, adult crabs Carcinus maenas, gobies Pomatoschistus and juvenile flatfish were more abundant and larger on low than on high tidal flats, but 0-group Carcinus was more abundant on the high tidal flats. Crangon and 0-group Carcinus stomachs frequently contained Macoma remains. These predators selectively preyed on small 0-group Macoma, both in the field and in laboratory experiments. The effect of predation by epibenthic animals and birds, on the low and high tidal flats, was examined in exclosure experiments (2 mm mesh). There was no effect of epibenthos exclosure on adult Macoma. For 0-group Macoma, densities were higher in exclosures than in the controls where predators had normal access. The density reduction by epibenthic predators was much larger in the low than in the high intertidal. We found no effect of bird predation on densities of 0- and 1+group Macoma.Thus, 0-group Macoma is under high predation pressure by epibenthos in the low intertidal, especially by shrimps, while they are relatively safe in the high intertidal. However, most of the shellfish outgrow their epibenthic predators during their first summer. Therefore, it becomes safe for the bivalves to redistribute to locations where epibenthic predators are abundant, during their first winter. On the other hand, it did not become clear from this study why many of the larger Macoma leave the high intertidal. Concluding, the nursery use of Macoma-spat in the high intertidal is probably, at least partly, an adaptation to avoid epibenthic predation.  相似文献   

17.
Previous research has identified extensive inter-population variability in the morphology of the shore crab (Carcinus maenas L.). To determine the source of this variation (genetic or environmental), morphological and genetic data were analysed from crabs collected from eight sites around the coast of the UK. Ten morphometric traits were measured from over 800 crabs and the degree of morphological similarity among sites was calculated using multivariate techniques. Allozyme electrophoresis was used to investigate patterns of genetic similarity. Extensive morphological variability was detected: eight out of the ten morphometric traits analysed were useful when discriminating between crabs from each site. Discriminant function analysis revealed that over 35% of individuals could be classified to their site of origin on the basis of their morphology. In contrast, the allozyme analysis revealed low levels of genetic variability, both within the meta-population and among the crab population at each site. Pairwise comparisons revealed a moderate correlation between the degree of morphological and genetic similarity of crabs at each site, which suggests that the observed phenotypic variability has a genetic component. However, only around 20% of the phenotypic variability detected was associated with the patterns of genetic similarity. This means that patterns of morphological variability in this species are largely determined by the local environmental conditions: local factors could have a within-generation selective influence on mean trait values or C. maenas may exhibit phenotypic plasticity.  相似文献   

18.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

19.
The major claws of predatory, durophagous decapods are specialized structures that are routinely used to crush the armor of their prey. This task requires the generation of extremely strong forces, among the strongest forces measured for any animal in any activity. Laboratory studies have shown that claw strength in crabs can respond plastically to, and thereby potentially match, the strength of their prey's defensive armor. These results suggest that claw strength may be variable among natural populations of crabs. However, very few studies have investigated spatial variation in claw strength and related morphometric traits in crabs. Using three geographically separate populations of the invasive green crab in the Gulf of Maine, we demonstrate, for the first time, geographic variation in directly measured claw crushing forces in a brachyuran. Despite variation in mean claw strength however, the scaling of claw crushing force with claw size was consistent among populations. We found that measurements of crushing force were obtained with low error and were highly repeatable for individual crabs. We also show that claw mass, independent of a linear measure of claw size, and carapace color, which is an indicator of time spent in the intermoult, were important predictors of claw crushing force.  相似文献   

20.
Predation on flatfish during the early juvenile stage is an important factor regulating year-class strength and recruitment. In this study, immunological dietary analysis was performed on green crabs (Carcinus maenas) collected from the Niantic River, Connecticut, in an effort to evaluate the predatory impact of this species on post-settlement winter flounder (Pseudopleuronectes americanus). Through the use of species-specific antiserum, winter flounder proteins were identified in 4.8% of the green crab stomachs analyzed (n = 313, size range = 14-74 mm carapace width, CW), revealing that crabs ≥ 29 mm CW are predators of post-settlement winter flounder in natural populations. The most significant factor underlying the predator-prey interaction was the relative size relationship between species, such that the incidence of winter flounder remains in the stomach contents of green crabs was positively correlated with predator-to-prey size ratio. Results from dietary analysis were incorporated into a deterministic model to estimate the average daily instantaneous mortality and cumulative mortality of winter flounder owing to green crab predation. Accordingly, green crabs may account for 0.4% to 7.7% (mean = 2.2%) of the daily mortality of winter flounder and consume 1.1% to 32.3% (mean = 10.2%) of the flounder year-class. Model simulations further indicate that variations in green crab abundance and size-structure account for the greatest variability in winter flounder mortality. Relative to other macro-crustacean predators, however, predation by green crabs has a minimal effect on winter flounder survival, due in large part to the low densities of these crabs in temperate estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号