首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Morphine is widely used to treat chronic pain, however its utility is hindered by the development of tolerance to its analgesic effects. The aim of this study was to investigate effects of fluoxetine, a specific serotonin (5-HT) reuptake inhibitor, and LY 367265, an inhibitor of the 5-HT transporter and 5-HT2A receptor antagonist, on tolerance induced to the analgesic effect of morphine in rats. The study was carried out on male Wistar Albino rats (weighing 170-190 g). To constitute morphine tolerance, animals received morphine (50 mg/kg; s.c.) once daily for 3 days. After last dose of morphine, injected on day 4, morphine tolerance was evaluated. The analgesic effects of fluoxetine (10 mg/ kg; i.p.), LY 367265 (3 mg/kg; i.p.) and morphine were considered at 30-min intervals by tail-flick and hot-plate tests. The results showed that fluoxetine and LY 367265 significantly attenuated the development and expression of morphine tolerance. The maximal antinociceptive effects were obtained 30 min after administration of fluoxetine and 60 min after administration of LY 367265. In conclusion, we observed that co-injection of morphine with fluoxetine and LY 367265 increased the analgesic effects of morphine and delayed development of tolerance to morphine analgesia.  相似文献   

2.
H N Bhargava  P Ramarao 《Peptides》1989,10(4):767-771
Comparative effects of Pro-Leu-Gly-NH2 (MIF) and cyclo(Leu-Gly) (CLG) administered orally at different stages of chronic morphine treatment on the development of tolerance to the analgesic effect of morphine in the rat were determined. Male Sprague-Dawley rats were implanted with either 6 placebo or morphine pellets during a 7-day period. Implantation of morphine pellets resulted in the development of a high degree of tolerance as evidenced by a decrease in the analgesic response to morphine. Administration of CLG (8 and 16 mg/kg/day) on day 5, 6 and 7 of implantation inhibited the development of tolerance to morphine but 4 and 32 mg/kg doses had no effect. Further, CLG (2 mg/kg/day for 7 days) inhibited the development of tolerance but higher doses (4 and 8 mg/kg) had no effect. MIF (26 and 52 mg/kg) administered orally on the last three days of the implantation schedule inhibited the development of tolerance to morphine. MIF (6.5 mg/kg/day for 7 days) inhibited the development of tolerance but the higher doses had no effect. Concurrent administration of MIF (6.5 mg/kg) and CLG (2 mg/kg) for seven days failed to inhibit the development of tolerance. A single dose of MIF or CLG administered a day before the assessment of tolerance did not affect the morphine tolerance. Thus, even after a significant degree of tolerance to morphine had developed, neuropeptides like MIF and CLG given orally, in appropriate doses, can inhibit development of tolerance to morphine and restore the analgesic effect of morphine.  相似文献   

3.
C A Paronis  S G Holtzman 《Life sciences》1992,50(19):1407-1416
Chronic opioid antagonist administration increases opioid binding sites and potentiates behavioral responses to morphine. Conversely, chronic opioid agonist administration attenuates behavioral responses to morphine, though this is not necessarily accompanied by a parallel loss of binding sites. We examined the possibility that the in vivo affinity of the mu receptors might be altered as a consequence of the continuous administration of either naloxone or morphine. Rats were implanted sc with naloxone- or morphine-filled osmotic pumps; control animals were implanted with sham pumps. One week later, 24 hr after removing the osmotic pumps, cumulative dose-response curves for fentanyl analgesia were generated in the presence of 0.0, 0.03, 0.1, or 0.3 mg/kg naltrexone, using a tail-flick procedure. The analgesic ED50 (with 95% C. L.) of fentanyl in sham implanted animals, following saline pretreatment was 0.027 mg/kg (0.019, 0.039). The potency of fentanyl was decreased in rats infused with morphine, ED50 = 0.051 mg/kg (0.028, 0.093), and increased in rats that received naloxone, ED50 = 0.018 mg/kg (0.015, 0.022). The mean apparent pA2 value for naltrexone (with 95% C.L.) in the control group was 7.7 (7.5, 7.9). No differences were detected in animals that had received either naloxone or morphine for 7 days, pA2 = 7.8 (7.5, 8.1) and 7.4 (7.3, 7.6), respectively. Our results indicate that there is no change in the apparent affinity of the mu-receptor following continuous exposure to either an opioid agonist or antagonist, at a time when the analgesic potency of the agonist is decreased or increased, respectively.  相似文献   

4.
A A Larson  A E Takemori 《Life sciences》1977,21(12):1807-1811
Fluoxetine, a specific inhibitor of the re-uptake of serotonin in the brain, was found to potentiate the analgesic effect of morphine as measured by the tail-flick method in rats. One dose of fluoxetine thirty minutes prior to analgesic testing in morphine pellet implanted rats was shown to inhibit the analgesic effect of acute challenges of morphine to the same degree as in rats treated daily with fluoxetine during the development of tolerance to morphine. These data indicate that serotonin may play a role in the analgesic effect of morphine, but not in the development of tolerance to narcotic analgesia.  相似文献   

5.
H N Bhargava 《Life sciences》1988,43(2):187-192
The effect of intragastric administration of cyclo(Leu-Gly), a cyclic dipeptide derived from melanotropin release inhibiting factor (Pro-Leu-Gly-NH2), on the development of tolerance to the analgesic effect of morphine in the rat was determined. The tolerance to morphine in the rat was induced by subcutaneous implantation of four morphine pellets during a 3-day period. The rats which served as controls were implanted with placebo pellets. The analgesic response to a challenge dose of morphine was determined by the tail-flick test. The tail-flick latencies were determined before and then every 30 min for 180 min. The analgesic response was computed by determining the area under the time-response curve. Implantation of morphine pellets resulted in the development of tolerance as evidenced by decreased analgesic response to morphine in morphine pellet implanted rats as compared to placebo pellet implanted rats. Chronic intragastric administration of cyclo(Leu-Gly) (4 to 16 mg/kg) inhibited the development of tolerance to morphine. A dose of 8 mg/kg of cyclo(Leu-Gly) completely blocked the tolerance to morphine. The study provides for the first time evidence that intragastric administration of a cyclic peptide can inhibit the development of tolerance to morphine, and that effective neuropeptides and their analogs can be developed as potential drugs to inhibit opiate-induced tolerance.  相似文献   

6.
Exposure (2 h) of adult male albino rats to higher environmental temperature (HET, 40°C) significantly increased body temperature (BT). Administration of (a) 5-HTP (5 mg/kg, i.p.) or morphine (1 mg/kg, i.p.) or physostigmine (0.2 mg/kg, i.p.) alone significantly increased and (b) methysergide (1 mg/kg, i.p.) or naloxone (1 mg/kg, i.p.) or atropine (5 mg/kg, i.p.) reduced the BT of both normal and HET exposed rats. Further, it was observed that morphine prevented the methysergide-induced hypothermia and 5-HTP potentiated the morphine-induced hyperthermia in both normal and HET exposed conditions. Biochemical study also indicates that serotonin metabolism was increased but GABA utilization was reduced following exposure to HET. 5-HTP or bicuculline-induced hyperthermia in control and HET exposed rat was potentiated with the coadministration of bicuculline and 5-HTP. The cotreatment of bicuculline with methysergide prevented the methysergide-induced attenuation of BT of heat exposed rat, rather BT was significantly enhanced indicating that inhibition of GABA system under heat exposed condition may activate the serotonergic activity. Further (a) enhancement of (i) morphine-induced hyperthermia with physostigmine (ii) physostigmine- or morphine + physostigmine-induced increase of BT with 5-HTP and (b) reduction of (i) morphine- or morphine + 5-HTP-induced hyperthermia with atropine and (ii) atropine-induced hypothermia with 5-HTP in both normal and HET exposed conditions suggest that HET exposure activates the cholinergic system through the activation of opioidergic and serotonergic system and hence increased the BT. Thus, it may be concluded that there is an involvement of serotonergic regulation in the opioidergic-cholinergic interaction via GABA system in HET-induced increase in BT.  相似文献   

7.
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on pain sensitivity, on morphine analgesia, on morphine tolerance and withdrawal were investigated in mice. The heat-radiant tail-flick test was used to assess antinociceptive threshold. Intracerebroventricular (i.c.v.) administration of PACAP alone had no effect on pain sensitivity but in a dose of 500 ng, it significantly diminished the analgesic effect of a single dose of morphine (2.25 mg/kg, s.c.). PACAP (500 ng, i.c.v.) significantly increased the chronic tolerance to morphine and enhanced the naloxone (1 mg/kg, s.c.)-precipitated withdrawal jumping. Theophylline (1 mg/kg, i.p.) pretreatment significantly enhanced the effect of PACAP on morphine analgesia but the effects of PACAP on tolerance and withdrawal were unaffected upon theophylline administration. On the grounds of our previous studies with vasoactive intestinal polypeptide (VIP), it appears that different receptors are involved in the effects of PACAP in acute and chronic morphine actions. Our results indicate that PACAP-induced actions likely participate in acute and chronic effects of morphine and suggest a potential role of PACAP in opioid analgesia, tolerance and withdrawal.  相似文献   

8.
Bhalla S  Matwyshyn G  Gulati A 《Peptides》2003,24(4):553-561
Several neurotransmitter mechanisms have been proposed to play a role in the development of morphine tolerance. The present study provides evidence for the first time that endothelin (ET) antagonists can restore morphine analgesia in morphine tolerant rats. Tolerance to morphine was induced by subcutaneous implantation of six morphine pellets during a 7-day period. The degree of tolerance to morphine was measured by determining analgesic response (tail-flick latency) and hyperthermic response to morphine sulfate (8 mg/kg, subcutaneously (s.c.)) in placebo and morphine pellet implanted rats. The maximal tail-flick latency in morphine pellet-vehicle treated rats (7.54 s) was significantly lower (P<0.05) when compared to placebo pellet-vehicle treated rats (10s), indicating that tolerance developed to the analgesic effect of morphine. In separate sets of experiments, ET antagonists, BQ123 (10 microg, intracerebroventricularly (i.c.v.)) and BMS182874 (50 microg, i.c.v.) were administered in placebo and morphine tolerant rats. BQ123 was injected twice daily for 7 days and once on day 8. BMS182874 was administered only on day 8. Morphine (8 mg/kg, s.c.) was administered 30min after BQ123 or BMS182874 administration. It was found that both BQ123 and BMS182874 potentiated morphine analgesia in placebo and morphine tolerant rats. BQ123 potentiated tail-flick latency by 30.0% in placebo tolerant rats and 94.5% in morphine tolerant rats compared to respective controls. BMS182874 potentiated tail-flick latency by 30.2% in placebo tolerant rats and 66.7% in morphine tolerant rats. Morphine-induced hyperthermic effect was also potentiated by BQ123 and BMS182874. The duration of analgesic action was also prolonged by BQ123 and BMS182874. The effect of BMS182874 was less as compared to BQ123. BQ123 and BMS182874 are selective ET(A) receptor antagonists. Therefore, it is concluded that ET(A) receptor antagonists restore morphine analgesia in morphine tolerant rats.  相似文献   

9.
Although the phenomenon of opioid tolerance has been widely investigated, neither opioid nor nonopioid mechanisms are completely understood. The aim of the present study was to investigate the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway in the development of morphine-induced analgesia tolerance. The study was carried out on male Wistar albino rats (weighing 180-210 g; n = 126). To develop morphine tolerance, animals were given morphine (50 mg/kg; s.c.) once daily for 3 days. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated. The analgesic effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), BAY 41-2272, S-nitroso-N-acetylpenicillamine (SNAP), N(G)-nitro-L-arginine methyl ester (L-NAME), and morphine were considered at 15 or 30 min intervals (0, 15, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests (n = 6 in each study group). The results showed that YC-1 and BAY 41-2272, a NO-independent activator of soluble guanylate cyclase (sGC), significantly increased the development and expression of morphine tolerance, and L-NAME, a NO synthase (NOS) inhibitor, significantly decreased the development of morphine tolerance. In conclusion, these data demonstrate that the nitric oxide-cGMP signal pathway plays a pivotal role in developing tolerance to the analgesic effect of morphine.  相似文献   

10.
The effect of methamphetamine on morphine analgesia (tail-flick assay) was studied in non-tolerant mice and in mice made acutely tolerant to morphine following a single injection of 100 mg/kg morphine. The analgesic potency of morphine was increased in non-tolerant and tolerant mice to the same extent by 3.2 mg/kg methamphetamine (3.3 and 4.4 fold increases, respectively). In contrast, the ED50's for morphine analgesia and naloxone-precipitated jumping in mice pretreated with either 100 mg/kg morphine or both morphine and 3.2 mg/kg methamphetamine were not significantly different, indicating that methamphetamine had no effect on the development of acute morphine tolerance and dependence. Although methamphetamine had no effect on the development of acute tolerance to morphine, 4-day pretreatment with methamphetamine produced cross-tolerance to morphine analgesia. However, cross-tolerance to morphine was not accompanied by enchanced sensitivity to naloxone.  相似文献   

11.
Loperamide, a mu opioid receptor agonist, which is commonly used as an antidiarrhoeal agent has been reported to possess analgesic activity after intrathecal administration. However, the exact analgesic profile, i.e., onset, duration and intensity of analgesia in relation to morphine is not fully known. In the present study, the acute analgesic effect of loperamide (5 microg) was compared with that of morphine (5 microg) and morphine + loperamide (5 microg of each) using the tail flick method after intrathecal administration. Naloxone (5 mg/kg) reversibility of the analgesic effect was also studied. The analgesic response of loperamide was significantly higher than morphine. Even after 22 hr, maximum possible effect was greater than 49%. Naloxone partially antagonized the analgesic effect of loperamide. This suggested that loperamide may be acting through blockade of Ca2+ channels besides activating mu opioid receptors. Loperamide may prove to be a better substitute for morphine as spinal analgesic.  相似文献   

12.
The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeODMT), a serotonin agonist with a preferential action on presynaptic autoreceptors, on prolactin release in male rats was determined. Basal serum prolactin levels were not altered after administration of 1.0, 2.0, 5.0, 10.0 or 20.0 mg/kg of 5-MeODMT.Pretreatment with 5-MeODMT reduced prolactin release by agents that depend on serotonergic neurotransmission for part of their prolactin release stimulation. Prolactin release in response to L-5-hydroxytryptophan (5-HTP) or morphine was significantly reduced by pretreatment of the rats with 5-MeODMT.The results of this experiment indicate that 5-MeODMT act as a presynaptic serotonin autoreceptor stimulant and not as a postsynaptic serotonin agonist on the neuronal systems that control prolactin release.  相似文献   

13.
1,2,3,4-Tetrahydroisoquinolines, among them the most interesting neuroprotective substance, an inhibitor of MAO, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), are endogenous compounds present in the central nervous system of mammals and humans. In this study, we investigated the effect of 1MeTIQ on morphine-induced analgesia, tolerance and abstinence syndrome as well as its effect on morphine-induced changes in dopamine metabolism in rat brain structures (nucleus accumbens, striatum, substantia nigra) using HPLC methodology. The experiments were carried out on male Wistar rats. Morphine analgesia was measured in the "hot-plate" test. To induce tolerance, morphine was given chronically (20 mg/kg i.p.) alone or following 1MeTIQ (50 mg/kg i.p.) injection. The development of dependence was assessed in the naloxone (2 mg/kg i.p.) precipitation test, after 10 days of morphine administration. The behavioral studies have shown that an endogenous compound, 1MeTIQ produced strong potentiation of morphine analgesia, prevented the development of morphine tolerance and inhibited expression of morphine abstinence syndrome in morphine-dependent rats. In neurochemical studies, we have demonstrated that 1MeTIQ antagonized morphine-induced changes in dopamine metabolism observed in rat brain structures. The main finding of this study was demonstration for the first time of an anti-abuse effect of an endogenous compound, 1MeTIQ, and its efficiency in counteracting morphine-induced addiction in the way useful from clinical point of view. The obtained results suggested a possibility of clinical application of 1MeTIQ in morphine addiction.  相似文献   

14.
The effect of the serotonin precursor 5-hydroxytryptophan (5-HTP) on jejunal migrating myoelectric complexes (MMCs) was investigated in conscious rats. Subcutaneous administration of low doses of 5-HTP (1-2 mg/kg) shortened the period between migrating complexes, whereas high doses of the compound (4-8 mg/kg) disrupted the MMC pattern. The serotonin (5-HT2) antagonist methysergide (8 mg/kg s.c.) did not alter basal MMC, neither did it prevent the effect of a low dose of 5-HTP; conversely, it antagonized the disruption due to the high dose. The 5-HT3 antagonist ICS 205-930 (30 micrograms/kg s.c.) decreased MMC frequency; administration of 2 mg/kg 5-HTP following ICS 205-930 brought the frequency of myoelectric complexes back to basal values. Both effects of 5-HTP were prevented by the decarboxylase inhibitor benserazide (85 mg/kg i.p.), which per se caused a transient inhibition of spiking activity. The results suggest that rat MMCs can be influenced in a composite fashion by progressively increasing concentrations of 5-HT, which in turn activate different receptor subtypes. A peripheral neuronal receptor, probably belonging to the 5-HT3 subclass, mediates the increase in MMC frequency observed after low doses of 5-HTP; higher levels of serotonin activate 5-HT2 receptors, causing disruption of cycling activity. Additionally, 5-HT3 receptors, but not 5-HT2, appear to be relevant for the regulation of the MMC pattern by the endogenous amine.  相似文献   

15.
P L Tao  G C Yeh  C H Su  Y H Wu 《Life sciences》2001,69(20):2439-2450
In this study, we have focused our investigation of the facts whether co-administration of a NMDA antagonist dextromethorphan (DM) with morphine during pregnancy and throughout lactation could prevent the adverse effects associated with chronic morphine administration in rat offspring. Adult female Sprague-Dawley rats were randomly separated into four groups and were received subcutaneous injection of either saline, morphine, morphine + dextromethorphan or dextromethorphan twice a day and progressively increased 1 mg/kg at 7-day intervals from a beginning dose of 2 mg/kg for both morphine and dextromethorphan. The rats were mated between days 7 and 8. Administration of drugs was continued during pregnancy. After rat offspring were born, the doses of morphine or dextromethorphan injected into the maternal rats were increased by 1 mg/kg every two weeks till the offspring were 30 day old. The results showed that mortality of morphine group is much higher than control group. The offspring of morphine group weighed significantly less than control group on postnatal day 14 (p14), p30 or p60. The antinociceptive effect of morphine on p14 rats was reduced in the morphine group and indicated the development of morphine tolerance. The hippocampal NMDA receptor densities have been shown decreased on p14 rats. The precipitated withdrawal symptoms were assessed on p7 rats. Rats in morphine group showed greater frequency of abdominal stretch and wet dog shake in 2 hr than control group. On the other hand, co-administration of DM with morphine effectively prevented all these adverse effects of morphine to the offspring rats. DM co-administered with morphine also partially prevented the development of morphine tolerance in maternal rats. If this effect of dextromethorphan is applied to clinical pregnant patients with morphine addiction or chronic pain, it will have a great value for the benefit of their children.  相似文献   

16.
L W Rogers  J Giordano 《Life sciences》1990,47(11):961-969
We have recently shown the serotonin 5-HT1A receptor agonist buspirone to produce analgesia in several pain tests in rats. As a 5-HT1A agonist, buspirone may change serotonergic (5-HT) tone to alter the balance of central monoaminergic (MA) systems that function in analgesia. MA-reuptake blocking drugs have been shown to produce analgesia, both when given alone and in combination with a variety of other agents, presumably via their action upon MA neurochemistry. The present study was undertaken to examine the effect of systemic administration of the 5-HT-reuptake blocker amitriptyline (AMI: 10 mg/kg), NE-reuptake blocker desipramine (DMI: 10 mg/kg) or DA-reuptake blocker GBR-12909 (7.5 mg/kg) on patterns of analgesia produced by buspirone (1-5 mg/kg) in thermal and mechanical pain tests in rats. Neither reuptake blocking agents or buspirone, when administered alone or in combination, produced overt changes in motor activity at the doses tested. AMI alone was not analgesic in either thermal or mechanical pain tests. In both assays, AMI reduced the analgesic action of buspirone, with greater effects seen in the thermal test. When administered alone, DMI produced significant analgesia against thermal and mechanical pain. DMI significantly attenuated the analgesic action of all doses of buspirone in both pain tests. Alone, GBR-12909 did not affect nociception in thermal or mechanical tests. GBR-12909 decreased buspirone-induced analgesia at all doses in the thermal test, while having no effect on buspirone-induced analgesia against mechanical pain. These results demonstrate that facilitation of 5-HT, NE and DA function with reuptake blocking drugs did not enhance the analgesic action of buspirone. These data indicate against the adjuvant use of reuptake blocking compounds and buspirone as analgesics. Furthermore, such findings may suggest other possible non-MA substrates of buspirone-induced analgesia.  相似文献   

17.
H N Bhargava 《Life sciences》1981,29(10):1015-1020
The effects of thyrotropin releasing hormone (TRH) on tolerance to the analgesic and hypothermic effects of morphine were determined in male Swiss Webster mice. The tolerance to morphine was induced by SC implantation of a morphine pellet containing 75 mg morphine free base for 3 days. Subcutaneous injections of TRH (4 mg/kg) twice a day inhibited tolerance to the analgesic effect of morphine, as evidenced by a greater degree of analgesia in TRH treated mice as compared with similarly treated vehicle injected controls. The same treatment, however, failed to modify tolerance to the hypothermic effect of morphine. These effects were produced with alterations in brain or plasma levels of morphine. It is concluded that tolerance to the two pharmacological effects of morphine may involve separate mechanism.  相似文献   

18.
Opioids are extensively used for the management of both chronic malignant and non malignant pains. One major serious limitation associated with chronic use of opioids is the development of tolerance to its analgesic effect. The effect of Bacopa monnieri, a renowned ayurvedic medicine for acquisition and expression of morphine tolerance in mice, was investigated. Bacopa monnieri, n-Butanol fraction was analyzed on High performance liquid chromatography (HPLC), for Bacopaside A major components i.e. Bacoside A3, Bacopaside ll and Bacosaponin C. Antinociceptive effect of n-Butanol extract of Bacopa monnieri (n Bt-ext BM) (5, 10 and 15 mg/kg) was assessed on hot plate. Effect of different doses of n Bt-ext BM on morphine antinociception was also assessed. n Bt-ext BM was also screened for development of tolerance to antinociceptive effect of Bacopa monnieri by administering 15 mg/kg n Bt-ext BM for seven days. Tolerance to morphine analgesia was induced in mice by administering intraperitoneally (I.P.) 20 mg/kg morphine twice daily for five days. Acute and Chronic administration of 5, 10 and 15 mg/kg n Bt-ext BM significantly reduced both expression and development of tolerance to morphine analgesia in mice. Additionally, Bacopa monnieri was found to enhance antinociceptive effect of morphine in intolerant animals. However, no tolerance to Bacopa monnieri antinociceptive effect was observed in seven days treatment schedule. These findings indicate effectiveness of Bacopa monnieri for management of morphine tolerance.  相似文献   

19.

Background

Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated.

Results

Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also impaired the analgesic effects of cannabinoids.

Conclusion

In the brain, cannabinoids can produce analgesic tolerance that is not associated with the loss of surface CB1Rs or their uncoupling from regulated transduction. Neural specific Gz proteins are essential mediators of the analgesic effects of supraspinal CB1R agonists and morphine. These Gz proteins are also responsible for the long-term analgesic tolerance produced by single doses of these agonists, as well as for the cross-tolerance between CB1Rs and MORs.  相似文献   

20.
Loeffler  D.A.  LeWitt  P.A.  Juneau  P.L.  Camp  D.M.  DeMaggio  A.J.  Havaich  M.K.  Milbury  P.E.  Matson  W.R. 《Neurochemical research》1998,23(12):1521-1525
Parkinson's disease (PD) is characterized by decreased striatal dopamine, but serotonin (5-HT) is also reduced. Because 5-HT decreases following a single levodopa injection, levodopa has been suggested to contribute to PD's serotonergic deficits. However, in a recent study, rat striatal serotonin levels were reported to increase following 15-day levodopa administration. To address this issue, we administered levodopa (50 mg/kg) to rabbits for 5 days, then measured serotonin, its precursors tryptophan and 5-hydroxytryptophan (5-HTP), and its major metabolite 5-hydroxyindole-acetic acid (5-HIAA) in striatum and CSF. Striatal serotonin and tryptophan were unchanged, while 5-HTP and 5-HIAA increased 4- and 7-fold, respectively. CSF 5-HTP and 5-HIAA were also significantly increased. In levodopa-treated animals, 5-HTP concentrations were moderately correlated (r = 0.679) between striatum and CSF, while weak correlations were present between striatal and CSF concentrations of both serotonin and 5-HIAA. These results suggest that repeated levodopa treatment increases striatal serotonin turnover without changing serotonin content. However, levodopa-induced alterations in striatal serotonin metabolism may not be accurately reflected by measurement of serotonin and 5-HIAA in CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号