首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Xin Wang  Xiao-Ting Zheng 《Palaeoworld》2012,21(3-4):193-201
Archaefructus is a genus of considerable interest and importance in the study of early angiosperms. Three previously documented species have provided important information about early angiosperms, although some of their characters have been interpreted in various ways. Additional new materials presented in this paper along with the holotype of Archaefructus liaoningensis illustrate branching pattern, fruit arrangement, and seed attachment in Archaefructus. New observations indicate that Archaefructus has ovules/seeds attached to the midrib on the abaxial side of the fruits and a whorled/opposite arrangement for the fruits on the axis. New fossil material of Archaefructus sinensis demonstrates that fruit pairs are inserted on the infructescence axis oppositely. The diagnoses of Archaefructus and Archaefructaceae are emended, and their significance on early angiosperm evolution is discussed.  相似文献   

2.

Background  

The origin of angiosperms has been under debate since the time of Darwin. While there has been much speculation in past decades about pre-Cretaceous angiosperms, including Archaefructus, these reports are controversial. The earliest reliable fossil record of angiosperms remains restricted to the Cretaceous, even though recent molecular phylogenetic studies suggest an origin for angiosperms much earlier than the current fossil record.  相似文献   

3.
Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus paniigen. et sp. nov., from the Middle–Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers.  相似文献   

4.
5.
Approaches to the identification of angiosperm leaf remains   总被引:1,自引:0,他引:1  
During the past 125 years the history of early angiosperms, interpreted through the fossil leaf record has been largely an exercise in paleofloristic studies, ignoring evolution. Imprecise identifications of ancient leaves “matched” to extant genera and families have been used as the basis for reconstructions of paleocommunities and paleoclimates. However, as the result of careful morphological studies of leaf form, venation and cuticular features new insights into the evolution of angiosperms are now available. In this paper considerations are given to the usefulness and shortcomings of leaf form, venation and cuticular analysis as diagnostic tools of plant identification. Many techniques for the study of the morphology of modern and fossil leaves are included in this paper as well as tables outlining features of leaf venation and the epidermis. Careful morphological studies of leaf form (such as the venation and epidermal characters emphasized in this paper) will provide better understanding of the relationships of living angiosperms and transform the fossil leaf record into useful data that can be used to study the evolution of the angiosperms.  相似文献   

6.
Seven dispersed monosulcate pollen taxa from the Dakota Formation of Minnesota, Nebraska, and Kansas were examined ultrastructurally. Rugubivesiculites rugosus has gymnosperm affinities based on its anasulcate aperture and the presence and nature of the formation of sacci. Stellatopollis sp. has exine sculpturing restricted to taxa with angiosperm affinities and is monosulcate. The affinities of the other five monosulcate taxa are uncertain and the exines are tectategranular. The sulcus in many of the remaining five taxa are flanked by small flange-like sacci. These five taxa have features found in gymnosperms and also some features of primitive extant angiosperms. The combination of characters of the pollen types presented here does not entirely agree with our current concept of primitive pollen characters as understood from extant ranalean angiosperms.  相似文献   

7.
Abstract Caytoniales are an important group of seed plants, and the nature of their female reproductive organ may influence interpretations of the seed plant phylogeny and the origin of angiosperms. Although not convincingly demonstrated by clear evidence, cupules on previously described specimens were interpreted as being distichously arranged, implying that the cupule‐bearing organ in Caytoniales was a pinnate megasporophyll. Here a female reproductive organ of Paracaytonia hongtaoi gen. et sp. nov. (Caytoniales) is reported from Liaoning, China. The well preserved specimen clearly shows a spiral arrangement of cupules along the reproductive axis, suggesting that the cupule‐bearing organ in Caytoniales is not a megasporophyll but a branch. This new information on the axial nature of the cupule‐bearing organ in Caytoniales has significant implications on the placement of Caytoniales in the seed plant phylogeny and interpretation of the relationship between Caytoniales and angiosperms.  相似文献   

8.
Lectins also identified as hemagglutinins are multivalent proteins and on account of their fine sugar‐binding specificity play an important role in immune system of invertebrates. The present study was carried out on the hemolymph lectin of cockroach, Periplaneta americana with appropriate screening and purification to understand its molecular as well as functional nature. The lectin from the hemolymph was purified using ion‐exchange chromatography. The approximate molecular weight of purified lectin was 340 kDa as determined by FPLC analysis. Rabbit erythrocytes were highly agglutinated with purified lectin from the hemolymph of P. americana. The hemagglutination activity (HA) of lectin was specifically inhibited by fucose. Glycoproteins also inhibited the HA activity of lectin. The amino acid sequences of the purified lectin revealed homology with amino acid sequences of allergen proteins from P. americana. Purified lectin showed the highest phenoloxidase activity against dopamine. The activators such as exogenous proteases and LPS from Escherichia coli and Salmonella minnesota significantly enhanced the PO activity of the purified lectin. Besides, the presence of copper and hemocyanin conserved domain in the purified lectin provided a new facet that insects belonging to the ancient clade such as cockroaches retained some traces of evolutionary resemblance in possessing lectin of ancient origin.  相似文献   

9.
在野外植被调查、标本采集和资料查询整理的基础上,汇总了察隅河流域种子植物名录,并对流域内植物物种的组成、优势科属、区系地理成分及性质进行分析。运用R语言在属水平上与其周边16个地区的植物区系进行聚类及主成分分析,探讨察隅河流域种子植物区系与其他区系之间的关系。结果表明:(1)察隅河流域共含种子植物138科、689属、2 771种(含变种),其中裸植子物4科12属56种,被子植物134科677属2 715种,被子植物中双子叶植物112科531属2 270种占绝对优势。(2)区内地理成分联系广泛,科的区系划分除世界分布类型外,热带分布型53科(55.21%),温带分布型43科(44.79%);属的区系划分中所有类型均有分布,温带分布型396属(62.07%),热带分布型230属(36.05%);属的分布型与科相比具有更明显的温带性质;植物种类丰富度高但特有成分低,无特有科,仅含12特有属。(3)流域内植被垂直地带性分布较为明显,保留了较多古老孑遗植物,如裸子植物的西藏红豆杉(Taxus wallichiana)、察隅冷杉(Abies chayuensis)和云南松(Pinus yunnanensis)等;由于青藏高原的上升运动,成为杜鹃花属(Rhododendron)、虎耳草属(Saxifraga)、龙胆属(Gentiana)和报春花属(Primula)等新生高山植物区系成分分化繁衍的摇篮。(4)察隅河植物区系属喜马拉雅山南侧热带成分向温带成分过渡的区系性质,与珠峰自然保护区植物区系更为相似。  相似文献   

10.
Coiffard, C. & Gomez, B. 2009: The rise to dominance of the angiosperm kingdom: dispersal, habitat widening and evolution during the Late Cretaceous of Europe. Lethaia, Vol. 43, pp. 164–169. The earliest fossil records of angiosperms in Europe occur in the Barremian and consist of freshwater wetland plants. From the Barremian onwards, angiosperms show a stepwise widening of their ecological range with the result that they inhabited most environments by the Cenomanian. Nevertheless, most angiosperms had still restricted habitats, while a few angiosperm trees were confined to disturbed environments, such as channel margins. A Wagner’s Parsimony Method analysis performed on a fossil plant and locality database from the Turonian to the Campanian of Europe indicates continued decrease in richness of ferns and gymnosperms compared with angiosperms, turnover between conifer and palm trees in freshwater‐related swamps at about the Cenomanian/Turonian boundary, and spreading of angiosperm trees through the floodplains. The ecological range of angiosperm trees was increased, being recorded in channel margins from the Cenomanian and spreading over floodplains (e.g. Platanaceae) and swamps (e.g. Arecaceae) by the Campanian. These new ecological ranges and successions went with innovative architectures, such as dicot trees and palm trees. Most living core angiosperm families had their earliest representatives in the Late Cretaceous, which should be considered as the dawn of modern angiosperm forests. □Core angiosperms, Europe, Late Cretaceous, palms, Wagner’s Parsimony Method.  相似文献   

11.
A new angiosperm fructification, Caloda delevoryana, is described from the Cenomanian age Dakota Formation of central Kansas. It consists of a long, narrow, main axis with numerous secondary axes arranged helically around the main axis. These secondary axes are each terminated in a small receptacle bearing numerous conduplicate carpels. No evidence of a perianth or androecium was found. This fructification bears some similarity to a number of different modern orders, such as the Hamamelidales, Alismatales, Najadales, and Piperales, and families, particularly the Platanaceae and the Aponogetonaceae, but cannot definitely be assigned to any modern taxon within the angiosperms. C. delevoryana exhibits several characters traditionally assumed to be primitive in the angiosperms, and several other features of this fossil are proposed as primitive in the evolution of angiosperms. This floral axis, with its compact mass of numerous secondary axes bearing very small fruits and seeds, may be the product of reduction through diminished growth of internodes and carpels, and elaboration through increased repetition of floral modules. This record adds to the rapidly growing body of paleobotanical data on early angiosperm reproductive structures, which should prove important in the assessment of the extent and direction of angiosperm evolution.  相似文献   

12.
13.
This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi‐gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi‐gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue‐dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte‐specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte‐specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non‐seed plants.  相似文献   

14.
Whether as the ancient Egyptian crocodile‐god Sobek, a terrifying predator of African waterways, or simply as a premium handbag leather, the Nile crocodile (Crocodylus niloticus) has long held the fascination of mankind. Despite 200 years of study, however, uncertainty remains as to its taxonomy. While resolving such issues are key to understanding the origins and biogeography of the so‐called true crocodiles of genus Crocodylus, given widespread ongoing range contraction, such issues are paramount for design of future conservation strategies. In this issue of Molecular Ecology, Hekkala et al. (2011) apply analysis of modern, historic and ancient DNA (aDNA) to the questions, with far‐reaching implications. First they demonstrate that, as currently described, the Nile crocodile is paraphyletic, with individuals from the east and western clades separated by a number of New World crocodile species. The consequences of this finding are as important for conservation efforts as for their impact on crocodile taxonomy. Furthermore, they strike at the heart of the long‐standing debate over whether aDNA analysis of ancient Egyptian mummies is scientifically sound.  相似文献   

15.
  • The family Nymphaeaceae includes most of the diversity among the ANA‐grade angiosperms. Among the species of this family, floral structures and pollination strategies vary. The genus Victoria, as well as subgenera Lotos and Hydrocallis in Nymphaea, present night‐blooming, scented flowers pollinated by scarab beetles. Such similar pollination strategies have led to macromorphological similarities among the flowers of these species, which could be interpreted as homologies or convergences based on different phylogenetic hypotheses about the relationships of these groups.
  • We employed scanning electron microscopy of floral epidermis for seven species of the Nymphaeaceae with contrasting pollination biology to identify the main characters of the floral organs and the potential homologous nature of the structures involved in pollinator attraction. Moreover, we used transmission electron microscopy to observe ultrastructure of papillate‐conical epidermis in the stamen of Victoria cruziana. We then tested the phylogenetic or ecological distribution of these traits using both consensus network approaches and ancestral state reconstruction on fixed phylogenies.
  • Our results show that the night‐blooming flowers present different specialisations in their epidermis, with V. cruziana presenting the most elaborate floral anatomy. We also identify for the first time the presence of conical‐papillate cells in the order Nymphaeales. The epidermal characters tend to reflect phylogenetic relationships more than convergence due to pollinator selection.
  • These results point to an independent and parallel evolution of scarab pollination in Nymphaeaceae and demonstrate the promise of floral anatomy as a phylogenetic marker. Moreover, they indicate a degree of sophistication in the anatomical basis of cantharophilous flowers in the Nymphaeales that diverges from the most simplistic views of floral evolution in the angiosperms.
  相似文献   

16.
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.  相似文献   

17.
Definitions of character states in woods are softer than generally assumed, and more complex for workers to interpret. Only by a constant effort to transcend the limitations of glossaries can a more than partial understanding of wood anatomy and its evolution be achieved. The need for such an effort is most evident in a major group with sufficient wood diversity to demonstrate numerous problems in wood anatomical features. Caryophyllales s.l., with approximately 12 000 species, are such a group. Paradoxically, Caryophyllales offer many more interpretive problems than other ‘typically woody’ eudicot clades of comparable size: a wider range of wood structural patterns is represented in the order. An account of character expression diversity is presented for major wood characters of Caryophyllales. These characters include successive cambia (more extensively represented in Caryophyllales than elsewhere in angiosperms); vessel element perforation plates (non‐bordered and bordered, with and without constrictions); lateral wall pitting of vessels (notably pseudoscalariform patterns); vesturing and sculpturing on vessel walls; grouping of vessels; nature of tracheids and fibre‐tracheids, storying in libriform fibres, types of axial parenchyma, ray anatomy and shifts in ray ontogeny; juvenilism in rays; raylessness; occurrence of idioblasts; occurrence of a new cell type (ancistrocladan cells); correlations of raylessness with scattered bundle occurrence and other anatomical discoveries newly described and/or understood through the use of scanning electron microscopy and light microscopy. This study goes beyond summarizing or reportage and attempts interpretations in terms of shifts in degrees of juvenilism, diversification in habit, ecological occupancy strategies (with special attention to succulence) and phylogenetic change. Phylogenetic change in wood anatomy is held to be best interpreted when accompanied by an understanding of wood ontogeny, species ecology, species habit and taxonomic context. Wood anatomy of Caryophyllales demonstrates problems inherent in binary character definitions, mapping of morphological characters onto DNA‐based trees and attempts to analyse wood structure without taking into account ecological and habital features. The difficulties of bridging wood anatomy with physiology and ecology are briefly reviewed. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 342–393.  相似文献   

18.
The flowers of Illicium floridanum are pollinated by a wide variety of insects, particularly Diptera that emerge from the litter and stream in early spring. Coleoptera rarely visit the flowers. It is suggested that the mode of pollination is ancient and may also exist in species of primitive angiosperms in the South Pacific. Illicium floridanum is self-incompatible and possesses features of a gametophytically controlled incompatibility system. As a result of asexual reproduction, a lack of long-distance dispersal of pollen and self-incompatibility, fruit production is very low. This pattern of reproduction is found in other species of primitive angiosperms; incompatibility mechanisms which undoubtedly aided the angiosperms to become dominant may now be one of the major factors responsible for their extinction.  相似文献   

19.
经典的ABC模型成功地解释了模式植物拟南芥和金鱼草因同源异型基因突变而引起的植物花器官的变异。随后,大量花器官特征基因和新突变体的研究不断完善和发展了ABC模型。该文综述了近年来花器官发育分子模型及花器官同源基因的调控机理等方面的最新研究成果,并对未来的研究方向进行了展望,以期为深入了解花发育的分子机理和遗传机制奠定基础。  相似文献   

20.
Phylogenetic evidence for the herbaceous origin of angiosperms   总被引:7,自引:0,他引:7  
The ancestral angiosperm is commonly interpreted as an arborescent to shrubby magnolialean with large, multiparted, complex flowers. We examined this hypothesis using a phylogenetic analysis of new and reevaluated characters polarizabled with outgroup comparison. Our cladistic analysis of basal angiosperms placed the nonmagnolialeanChloranthaceae andPiperaceae at the bottom of the tree. We further inferred the probable ancestral states of characters not polarizable with outgroup comparison by examining their distribution among taxa at the base of our cladogram. The sum of ancestral character states suggests that the protoangiosperm was a diminutive, rhizomatous to scrambling perennial herb, with small, simple flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号