首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been demonstrated that fibroblast growth factor receptors are key regulators of endochondral bone growth. However, it has not been determined what fibroblast growth factor ligand(s) (FGFs) are important in this process. This study sought to determine whether FGFs 1, 2, 4, 5, 6, 7, 8, 9, and 10 were capable of stimulating avian chondrocyte proliferation in vitro. We have found that FGFs 2, 4, and 9 strongly stimulate avian chondrocyte proliferation while FGFs 6 and 8 stimulate proliferation to a lesser extent. RT-PCR indicates that FGF-2 and FGF-4 are expressed in the postnatal avian epiphyseal growth plate (EGP) while FGF-8 and FGF-9 are not. Thus, FGF-2 and FGF-4 stimulate chondrocyte proliferation and are both present in the EGP. This suggests that FGF-2 and FGF-4 may be important ligands, in vivo, for the regulation of endochondral bone growth. These observations coupled with our observation that multiple avian FGF receptors (Cek1, Cek2, Cek3, and FREK) are expressed in proliferative chondrocytes highlights the complexity of FGF signaling pathways in postnatal endochondral bone growth.  相似文献   

2.
Fibroblast growth factor-18 (FGF-18) has been shown to regulate the growth plate chondrocyte proliferation, hypertrophy and cartilage vascularization necessary for endochondral ossification. The heparan sulfate proteoglycan perlecan is also critical for growth plate chondrocyte proliferation. FGF-18 null mice exhibit a skeletal dwarfism similar to that of perlecan null mice. Growth plate perlecan contains chondroitin sulfate (CS) and heparan sulfate (HS) chains and FGF-18 is known to bind to heparin and to heparan sulfate from some sources. We used cationic filtration and immunoprecipitation assays to investigate the binding of FGF-18 to perlecan purified from the growth plate and to recombinant perlecan domains expressed in COS-7 cells. FGF-18 bound to perlecan with a Kd of 145 nM. Near saturation, ∼103 molecules of FGF-18 bound per molecule of perlecan. At the lower concentrations used, FGF-18 bound with a Kd of 27.8 nM. This binding was not significantly altered by chondroitinase nor heparitinase digestion of perlecan, but was substantially and significantly reduced by reduction and alkylation of the perlecan core protein. This indicates that the perlecan core protein (and not the CS nor HS chains) is involved in FGF-18 binding. FGF-18 bound equally to full-length perlecan purified from the growth plate and to recombinant domains I-III and III of perlecan. These data indicate that low affinity binding sites for FGF-18 are present in cysteine-rich regions of domain III of perlecan. FGF-18 stimulated 3H-thymidine incorporation in growth plate chondrocyte cultures derived from the lower and upper proliferating zones by 9- and 14-fold, respectively. The addition of perlecan reversed this increased incorporation in the lower proliferating chondrocytes by 74% and in the upper proliferating cells by 37%. These results suggest that perlecan can bind FGF-18 and alter the mitogenic effect of FGF-18 on growth plate chondrocytes.  相似文献   

3.
The objectives of this study were to establish a growth factor response profile for adult human articular chondrocytes, to determine whether this is unique for chondrocytes or influenced by the differentiation status of the cells, and to characterize growth factor interactions. It is shown that transforming growth factor-β (TGF-β) is the most potent mitogen among a variety of factors tested. All three isoforms of TGF-β caused similar dose-dependent increases in chondrocyte proliferation. Other members of the TGF-β family, including bone morphogenetic protein 2B (BMP2B), activin, and inhibin, did not detectably increase chondrocyte proliferation. Platelet-derived growth factor-AA (PDGF-AA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1) also stimulated proliferation but were less effective than TGF-β. In contrast to findings with other cell types, the effects of TGF-β on chondrocyte proliferation were not dependent on the endogenous production of PDGF. The cytokines Interleukin 1 (IL-1) and tumor necrosis factor-α (TNF-α) gave no stimulation, but IL-1 inhibited chondrocyte proliferation induced by TGF-β or serum. This response profile was characteristic for primary chondrocytes from human adults and distinct from subcultured (dedifferentiated) chondrocytes or skin fibroblasts. The latter preferentially responded to PDGF, and IL-1 caused greater increases in proliferation than TGF-β. In summary, these results describe growth factor responses that are characteristic for chondrocytes and provide a basis for the analysis of changes in chondrocyte growth proliferation that occur in aging and tissue injury. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Objective:  This study has aimed to study different culture systems that might stimulate an increase in cell proliferation of normal and osteoarthritis chondrocytes from articular cartilage in rat model.
Material and Methods:  Three culture systems using chondrocytes embedded in alginate beads were tested: chondrocytes cultured in Dulbecco's modified Eagle's medium (DMEM) as control, a co-culture system consisting of a monolayer of de-differentiated chondrocytes as a source of mitotic factors, and an enriched medium containing culture medium obtained from a monolayer of chondrocytes and DMEM. Normal and osteoarthritis chondrocytes were stained with 5-carboxyfluorescein diacetate succinimidyl ester and were cultured in each of the three systems. After 5 days of culture cell, proliferation was detected by flow cytometry. Chondrocyte phenotype was confirmed by collagen type II and MMP-3 expression. To determine possible molecules released into the medium by the cultured chondrocyte monolayer and which would probably be involved in cell proliferation, a study of mRNA and expression of transforming growth factor-β1 (TGF-β1), fibroblastic growth factor-2 (FGF-2), epidermal growth factor (EGF), platelet derived growth factor-A (PDGF-A) and insulin-like growth factor-1 (IGF-1) proteins was conducted.
Results and Conclusions:  Chondrocytes in the co-culture system or in enriched medium showed an increase in proliferation; only when osteoarthritis chondrocytes were cultured in enriched medium would they display a statistically significant increase in their proliferation rate and in their viability. When chondrocytes from the monolayer were analysed, differential mRNA expression of TGF-β1 and IGF-1 was found during all passages, which suggests that these two growth factors might be involved in chondrocyte proliferation.  相似文献   

5.
Summary In chondrocytes, fibroblast growth factors (FGFs) inhibit chondrocytes proliferation by upregulation of the cell cycle inhibitor p21cip/waf. In this report, we first investigated the roles of fibronectin (FN)-mediated cell adhesion in the modulation of FGF-1's antiproliferative function in chondrocytes. In this study, we found that FN-mediated signaling could rescue cell cycle arrest induced by FGF-1 in primary human chondrocytes. This prevention of cell cycle arrest induced by FGF-1 was due to the suppression of the cell cycle inhibitor p21cip/waf expression on adhesion to FN and its downstream activation of signaling pathways. Finally, we showed that this rescue induced by FN-mediated adhesion is dependent on the extracellular regulated kinase (ERK) signaling pathway. Taken together, these studies support that, despite FGF-FGF receptor's growth-inhibitory function, the FN-mediated signaling can collaborate to compensate for its negative effect on chondrocytes proliferation, providing evidence for cross talk between signals emerging from these cell surface molecules in chondrocyte.  相似文献   

6.
7.
Linear growth occurs as the result of growth plate chondrocytes undergoing proliferative and hypertrophic phases. Paracrine feedback loops that regulate the entry of chondrocytes into the hypertrophic phase have been shown and similar pathways likely exist for the proliferative phase. Human long-bone growth plate chondrocytes were cultured in vitro. The proliferative effects of a variety of factors were determined by [3H]thymidine uptake and the gene expression profile of these cells was determined by DNA microarray analysis. Serum, insulin-like growth factor (IGF)-I and -II, transforming growth factor-beta (TGF-beta, fibroblast growth factor (FGF)-1, -2, and -18, and platelet-derived growth factor (PDGF)-BB were potent stimulators of proliferation. FGF-10, testosterone, and bone morphogenetic proteins (BMP)-2, -4, and -6 inhibited proliferation. Microarray analysis showed that the genes for multiple members of the IGF-I, TGF-beta, FGF, and BMP pathways were expressed, suggesting the presence of autocrine/paracrine pathways that regulate the proliferative phase of growth plate-mediated growth.  相似文献   

8.
9.
Bovine calf articular chondrocytes, either primary or expanded in monolayers (2D) with or without 5 ng/ml fibroblast growth factor-2 (FGF-2), were cultured on three-dimensional (3D) biodegradable polyglycolic acid (PGA) scaffolds with or without 10 ng/ml bone morphogenetic protein-2 (BMP-2). Chondrocytes expanded without FGF-2 exhibited high intensity immunostaining for smooth muscle alpha-actin (SMA) and collagen type I and induced shrinkage of the PGA scaffold, thus resembling contractile fibroblasts. Chondrocytes expanded in the presence of FGF-2 and cultured 6 weeks on PGA scaffolds yielded engineered cartilage with 3.7-fold higher cell number, 4.2-fold higher wet weight, and 2.8-fold higher wet weight glycosaminoglycan (GAG) fraction than chondrocytes expanded without FGF-2. Chondrocytes expanded with FGF-2 and cultured on PGA scaffolds in the presence of BMP-2 for 6 weeks yielded engineered cartilage with similar cellularity and size, 1.5-fold higher wet weight GAG fraction, and more homogenous GAG distribution than the corresponding engineered cartilage cultured without BMP-2. The presence of BMP-2 during 3D culture had no apparent effect on primary chondrocytes or those expanded without FGF-2. In summary, the presence of FGF-2 during 2D expansion reduced chondrocyte expression of fibroblastic molecules and induced responsiveness to BMP-2 during 3D cultivation on PGA scaffolds.  相似文献   

10.
11.
FGF-2 is a regulator of chondrocyte proliferation in the developing growth plate and has been shown to bind to perlecan, a heparan sulfate proteoglycan. We evaluated the effect of perlecan isolated from the growth plate on the binding of FGF-2 to its low and high affinity receptors on resting and proliferating chondrocytes. Chondrocytes were isolated by pronase/collagenase digestion of 1 mm thick slices from the resting and proliferating zones of fetal bovine ribs and were plated in serum-free DMEM. Chondrocytes maintained their zone-specific level of DNA and matrix synthesis over a two-day culture period. The collagen, aggrecan, and perlecan components of the matrix produced were associated with the cell layer and were secreted into the medium. Most of the perlecan made by the chondrocytes was secreted into the medium. Western blots showed medium perlecan to contain two high molecular weight core proteins and overlay assays showed only the large core protein bound FGF-2. Cell layer perlecan contained only the smaller core protein. Immunoprecipitation assays of media showed that the medium perlecan bound (125)I-FGF-2, that the bound FGF-2 was eluted from perlecan by 2 M NaCl at pH 7.4, and that this binding was eliminated by prior digestion with heparatinase. This indicates that the perlecan secreted into the medium is a low affinity receptor for FGF-2. (125)I-FGF-2 also bound to the chondrocytes in cell culture. Competition studies showed exogenous FGF-2 reduced (125)I-FGF-2 binding to high affinity receptor but not the low affinity receptor in the cell layer. Exogenous perlecan, however, reduced (125)I-FGF-2 binding to both the low and the high affinity receptors in the cell layer by approximately 60%. The results suggest that perlecan made by growth plate chondrocytes is a low affinity receptor for FGF-2 and acts to sequester FGF-2 away from the high affinity receptor.  相似文献   

12.
Development of the basement membrane zone (BMZ) occurs postnatally in the rhesus monkey. The purpose of this study was to determine whether house dust mite allergen (HDMA) plus ozone altered this process. Rhesus monkeys were exposed to a regimen of HDMA and/or ozone or filtered air for 6 mo. To detect structural changes in the BMZ, we measured immunoreactivity of collagen I. To detect functional changes in the BMZ, we measured perlecan and fibroblast growth factor-2 (FGF-2). We also measured components of the FGF-2 ternary signaling complex [fibroblast growth factor receptor-1 (FGFR-1) and syndecan-4]. The width of the BMZ was irregular in the ozone groups, suggesting atypical development of the BMZ. Perlecan was also absent from the BMZ. In the absence of perlecan, FGF-2 was not bound to the BMZ. However, FGF-2 immunoreactivity was present in basal cells, the lateral intercellular space (LIS), and attenuated fibroblasts. FGFR-1 immunoreactivity was downregulated, and syndecan-4 immunoreactivity was upregulated in the basal cells. This suggests that FGF-2 in basal cells and LIS may be bound to the syndecan-4. We conclude that ozone and HDMA plus ozone effected incorporation of perlecan into the BMZ, resulting in atypical development of the BMZ. These changes are associated with specific alterations in the regulation of FGF-2, FGFR-1, and syndecan-4 in the airway epithelial-mesenchymal trophic unit, which may be associated with the developmental problems of lungs associated with exposure to ozone.  相似文献   

13.
The differentiated phenotype of chondrocytes from hyaline cartilage is gradually lost during expansion in monolayers. Chondrocytes can reexpress their differentiated phenotype by transfer into an environment that prevents cell flattening, but serially passaged cells never completely recover their chondrogenic potential. We report that chondrocytes expanded (up to 2000-fold) in the presence of fibroblast growth factor 2 (FGF-2) dedifferentiated, but fully maintained their potential for redifferentiation in response to environmental changes. After seeding onto three-dimensional polymer scaffolds, chondrocytes expanded in the presence of FGF-2 formed cartilaginous tissue that was histologically and biochemically comparable to that obtained using primary chondrocytes, in contrast to chondrocytes expanded to the same degree but in the absence of FGF-2. The presence of FGF-2 inhibited the formation of thick F-actin structures, which otherwise formed during monolayer expansion, were maintained during tissue cultivation, and were associated with reduced ability of chondrocytes to reexpress their differentiated phenotype. This study provides evidence that FGF-2 maintains the chondrogenic potential during chondrocyte expansion in monolayers, possibly due to changes in the architecture of F-actin elements and allows more efficient utilization of harvested tissue for cartilage tissue engineering.  相似文献   

14.
Fibroblast growth factor-2 (FGF-2), the most abundant growth factor produced by melanoma cells but not by normal melanocytes, is an important regulator of cell proliferation, migration and differentiation. In this study we show that M5 human metastatic melanoma cells’ ability to migrate is significantly enhanced by exogenously added FGF-2 while, neutralization of endogenous FGF-2 stimulates their adhesion. Previously, we have demonstrated that FGF-2 distinctly modulates the synthesis of individual glycosaminoglycans/proteoglycans (GAGs/PGs) subclasses, changing both their amounts and distribution in M5 cells. Here, treatment with FGF-2 strongly reduces the expression levels of the heparan sulfate-containing proteoglycan, syndecan-4. Syndecan-4 is a focal adhesion component in a range of cell types, adherent to several different matrix molecules, including fibronectin (FN). The reduction in syndecan-4 expression by utilizing specific siRNA discriminately increased melanoma cell motility and decreased their attachment on FN, demonstrating a regulatory role of syndecan-4 on these cell functions. Syndecan-4 has previously been demonstrated to regulate focal adhesion kinase (FAK) phosphorylation. In this study FGF-2 was shown to downregulate FAK Y397-phosphorylation during FN-mediated M5 cell adhesion, promoting their migration. The observed decrease in FAK Y397 activation was correlated to syndecan-4 expression levels. Thus, a balance in syndecan-4 expression perpetrated by FGF-2 may be required for optimal M5 cell migration.These results suggest that essential in melanoma progression FGF-2, specifically regulates melanoma cell ability to migrate through a syndecan-4-dependent mechanism.  相似文献   

15.
Adult human articular chondrocytes were expanded in a medium with 10% serum (CTR) or further supplemented with different mitogens (i.e., EGF, PDGFbb, FGF-2, TGF beta 1, or FGF-2/TGF beta 1). Cells were then induced to redifferentiate in 3D pellets using serum-supplemented medium (SSM), serum-free medium (SFM), or SFM supplemented with factors inducing differentiation of chondroprogenitor cells (i.e., TGF beta 1 and/or dexamethasone). All factors tested during expansion enhanced chondrocyte proliferation and dedifferentiation, as assessed by the mRNA ratios of collagen type II to type I (CII/CI) and aggrecan to versican (Agg/Ver), using real-time PCR. FGF-2/TGF beta 1-expanded chondrocytes displayed the lowest doubling times, CII/CI and Agg/Ver ratios, averaging, respectively, 50, 0.2 and 15% of CTR-expanded cells. Redifferentiation in pellets was more efficient in SFM than SSM only for EGF-, PDGFbb- or FGF-2-expanded chondrocytes. Upon supplementation of SFM with TGF beta and dexamethasone (SFM TD), CII/CI ratios decreased 4.4-fold for EGF- and PDGFbb-expanded chondrocytes, but increased 96-fold for FGF-2/TGF beta 1-expanded cells. Chondrocytes expanded with FGF-2/TGF beta 1 and redifferentiated in SFM TD expressed the largest mRNA amounts of CII and aggrecan and generated cartilaginous tissues with the highest accumulation of glycosaminoglycans and collagen type II. Our results provide evidence that growth factors during chondrocyte expansion not only influence cell proliferation and differentiation, but also the cell potential to redifferentiate and respond to regulatory molecules upon transfer into a 3D environment.  相似文献   

16.
17.
18.
19.
Cultured human primary osteoblasts reproduce the phenotypic differentiation and maturation of cells in vivo. We have investigated the influence of three isoforms of transforming growth factor beta (TGF-beta1, TGF-beta2 and TGF-beta3), three fibroblast growth factors (FGF-2, FGF-4 and FGF-6) and the active metabolite of Vitamin D [1,25-(OH)(2)D3] on proliferation, alkaline phosphatase activity and mineralization of human osteoblasts during a period of 24 days of culture. TGF-beta isoforms and three FGFs examined have been proved to be inducers of osteoblasts proliferation (higher extent for TGF-beta and FGF-2) and inhibitors of alkaline phosphatase activity and osteoblasts mineralization. Combination of these growth factors with the active form of Vitamin D induced osteodifferentiation. In fact Vitamin D showed an additive effect on alkaline phosphatase activity and calcium content, induced by FGF-2 and TGF-beta in human osteoblast. These results highlight the potential of proliferating cytokines' combination with mineralizing agents for in vitro bone growth induction in bone tissue engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号