首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, then apply it to a case of predator-induced hatching. Red-eyed treefrogs have arboreal eggs, and tadpoles fall into ponds upon hatching. Egg and tadpole predators select for earlier and later hatching, respectively. Embryos hatch up to 30% early in predator attacks, and later if undisturbed. They maintain large external gills throughout the plastic hatching period, delaying gill regression while development otherwise continues. Rapid gill regression occurs upon hatching. Prolonged embryonic development depends on external gills; inducing gill regression causes hatching. External hypoxia retards development, kills eggs, and induces hatching. Nonetheless, embryos develop synchronously and without hatching prematurely across a broad range of perivitelline PO2, from 0.5-12.5 kPa. Embryos exploit spatial variation of PO2 within eggs by positioning gills against patches of air-exposed surface. Respiratory plasticity and oxygen-sensitive behavior appear critical for the hatching plasticity that balances a predation risk trade-off across life stages.  相似文献   

2.
Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, then apply it to a case of predator-induced hatching. Red-eyed treefrogs have arboreal eggs, and tadpoles fall into ponds upon hatching. Egg and tadpole predators select for earlier and later hatching, respectively. Embryos hatch up to 30% early in predator attacks, and later if undisturbed. They maintain large external gills throughout the plastic hatching period, delaying gill regression while development otherwise continues. Rapid gill regression occurs upon hatching. Prolonged embryonic development depends on external gills; inducing gill regression causes hatching. External hypoxia retards development, kills eggs, and induces hatching. Nonetheless, embryos develop synchronously and without hatching prematurely across a broad range of perivitelline PO2, from 0.5–12.5 kPa. Embryos exploit spatial variation of PO2 within eggs by positioning gills against patches of air-exposed surface. Respiratory plasticity and oxygen-sensitive behavior appear critical for the hatching plasticity that balances a predation risk trade-off across life stages.  相似文献   

3.
The jelly around amphibian eggs presents a formidable barrier to oxygen diffusion. Therefore, egg capsules must be thin enough, and the dimensions of globular egg masses small enough, to avoid oxygen limitation leading to developmental retardation or death. The eggs of the Australian moss frog, Bryobatrachus nimbus, have the thickest jelly capsule known for any anuran amphibian. Laboratory measurements of respirometric variables predict that single prehatching embryos should be normoxic between 5 degrees and 20 degrees C, with Po(2 in) maintained above critical levels (10.2-17.0 kPa). However, numerical models of embryos amid larger egg masses (13-20 eggs) predict hypoxia at temperatures above 5 degrees C. Contrary to model predictions, however, B. nimbus embryos rarely experience hypoxia in natural nests, because embryos occur in one or two layers and the moss substrate permits aeration of the lower surface while photosynthesis probably supplies oxygen directly. After hatching, larvae move to oxygen-rich regions of the jelly mass and disperse more widely within the mass as temperatures increase. Although nest characteristics relieve diffusive constraints, small clutch sizes, low rates of embryonic and larval respiration, and the cool climate occupied by B. nimbus are the main characteristics that prevent hypoxia.  相似文献   

4.
The effect of oxygen partial pressure (Po(2)) on development and hatching was investigated in aquatic embryos of the myobatrachid frog, Crinia georgiana, in the field and in the laboratory. Eggs from 29 field nests experienced widely variable Po(2) but similar temperatures. Mean Po(2) in different nests ranged between 2.9 and 19.3 kPa (grand mean 12.9 kPa), and mean temperature ranged between 11.9 degrees and 16.8 degrees C (grand mean 13.7 degrees C). There was no detectable effect of Po(2) or temperature on development rate or hatching time in the field, except in one nest at 2.9 kPa where the embryos died, presumably in association with hypoxia. Laboratory eggs were incubated at 15 degrees C at a range of Po(2) between 2 and 25 kPa. Between 5 and 25 kPa, there was almost no effect of Po(2) on development rate to stage 26, but the embryos hatched progressively earlier-at earlier stages and lower gut-free body mass-at lower Po(2). At 2 kPa, development was severely delayed, growth of the embryo slowed, and morphological anomalies appeared. A high tolerance to low Po(2) may be an adaptation to embryonic development in the potentially hypoxic, aquatic environment.  相似文献   

5.
The ciliated epithelium of amphibian embryos produces a current within the perivitelline fluid of the egg that is important in the convective transfer of oxygen to the embryo's surface. The effects of convection on oxygen uptake and the immediate oxygen environment of the embryo were investigated in Pseudophryne bibronii. Gelatin was injected into the eggs, setting the perivitelline fluid and preventing convective flow. Oxygen consumption rate (M(.)o?) and the oxygen partial pressure (Po?) of the perivitelline fluid were measured in eggs with and without this treatment. M(.)o? decreased in eggs without convection at Gosner stages 17-19 under normoxia. The lack of convection also shifted embryos from regulators to conformers as environmental Po? decreased. A strong Po? gradient formed within the eggs when convection was absent, demonstrating that the loss of convection is equivalent to decreasing the inner radius of the capsule, an important factor in gas exchange, by 25%. M(.)o? also declined in stage 26-27 embryos without cilia-driven convection, although not to the extent of younger stages, because of muscular movements and a greater skin surface area in direct contact with the inner capsule wall. This study demonstrates the importance of convective flow within the perivitelline fluid to gas exchange. Convection is especially important in the middle of embryonic development, when the perivitelline space has formed, creating a barrier to gas exchange, but the embryos have yet to develop muscular movements or have a large surface area exposed directly to the jelly capsule.  相似文献   

6.
The red-eyed treefrog, Agalychnis callidryas , lays eggs on leaves overhanging ponds. Tadpoles hatch and enter the water at different ages, and late-hatched tadpoles survive aquatic predators better than do early-hatched tadpoles. Here I assess developmental consequences of hatching age through: (1) a morphological study of embryos and tadpoles through the plastic hatching period; (2) a behavioural assay for an effect of hatching age on feeding; and (3) a field experiment testing the effect of hatching age on growth to metamorphosis. Substantial development of feeding, digestive, respiratory and locomotor structures occurs in embryos over the plastic hatching period. Hatchling morphology thus varies with age, with consequences for behaviour and predation risk. Hatched tadpoles develop faster than embryos, and early-hatched tadpoles feed before late-hatched tadpoles. After all tadpoles have hatched, the effect of hatching age on size decreases. I found no evidence for an effect of hatching age on size at metamorphosis and only weak evidence for an effect on larval period. Hatching age affects the sequence of developmental change: early-hatched tadpoles lose external gills while otherwise more developed embryos maintain them. Plasticity in external gill resorption may be adaptive given differences in the respiratory environments of embryos and tadpoles. Early-hatched tadpoles also diverge from embryos in shape, growing relatively smaller tails. The study of functional morphology and developmental plasticity will contribute to understanding hatching as an ontogenetic niche shift.  相似文献   

7.
I examined the effects of development, hatching, and oxygen availability on external gill loss in red-eyed tree frogs, Agalychnis callidryas. Under natural conditions, the arboreal embryos maintained large external gills until hatching, which occurred from 5-8 d after oviposition. At hatching, when tadpoles entered the water, external gills began to regress. In older hatchlings this process was extremely rapid. Gill circulation was lost on average within 16 min and sometimes within 5 min. Gills often regressed completely in under 2 h. Younger hatchlings reduced gill circulation, shortened and adducted their gills, then resumed normal circulation for some time after hatching; half had completely lost external gills within 24 h. Experimentally increasing the area of egg surface exposed to the air induced loss of external gills in unhatched embryos. Older hatchlings in hypoxic water without access to air maintained their external gills. This suggests that loss of external gills is a response to increased oxygen availability, rather than a response to hatching per se. Extended maintenance of external gills by large, late-hatching embryos may facilitate continued rapid development in closely packed eggs.  相似文献   

8.
Respiration of Aquatic and Terrestrial Amphibian Embryos   总被引:1,自引:0,他引:1  
Respiratory constraints on the structure of single eggs andegg masses have affected the mode of amphibian reproductionin water and in air. Aquatic eggs generally require less oxygen,develop faster, and hatch earlier, but these characteristicsare related to small ovum size. A comparison of two speciesof aquatic and terrestrial breeding frogs with similarly sizedova shows no differences in hatching stage, maximum rate ofoxygen uptake, oxygen conductance of the egg capsule, or Po2difference across the capsule. However, the aquatic speciesdevelops about 2.4 times faster and tolerates lower environmentalPo2, suggesting adaptation for development in ephemeral water.Modelling of diffusive oxygen transport into a single aquaticegg shows that a large amount of jelly (or a boundary layer)around the capsule may not greatly restrict gas exchange, ifthe inner radius of the capsule is large. However, gelatinousegg masses that contain other embryos that compete for oxygenare therefore limited in size, unless the eggs are ventilatedby convection of water among them. Aquatic egg are often suspendedin masses above the substrate, promoting oxygen movement intothe mass from all directions. Terrestrial egg masses are morediffusion limited, because gravity and surface tension collapsethem, preventing convection between the eggs, and restrictingthe source for oxygen diffusion. Terrestrial embryos are oftenlarger than their aquatic counterparts and have higher demandsfor oxygen. Terrestrial conditions have selected for adaptationsthat reduce respiratory competition between embryos, for example,separating of embryos by large volumes of jelly or reducingthe number of eggs in a clutch. The size of foam nests is unlimited,because oxygen for each embryo is supplied directly from thefoam.  相似文献   

9.
In this work, we have completed a study of the development of the ovoviviparous lizard Liolaemus tenuis tenuis. Ovoviviparity in this lizard is a condition in which eggs are retained within the reproductive duct for about 60 days. During this period the phases of segmentation, gastrulation, neurulation, presomitic, and somitic embryos transpire. During the months of December and January the eggs are laid, and at this time the embryos are comparable to stage 27 Liolaemus gravenhorsti lizard embryos, or to stage 29 Calotes versicolor lizard embryos. Differentiation of the facial region occurs between Days 12 and 42 after egg laying. Limbs develop rapidly between the 8th and 23rd days. By 53 days the appendicular skeleton is completely formed. After 36 days the mesonephros begins to degenerate, and its function is gradually taken over by the developing metanephros. Newborn lizards do not possess an egg caruncle. During the period up to hatching, there is a great increase of liquid within the egg, presumably amniotic fluid. Cracks develop in the leathery shell shortly before hatching and are, perhaps, the first sign of the onset of hatching. Increase of liquid in the egg during postlaying development accounts for its increase in weight and change in shape. Weight of the embryo at hatching does not exceed 32% of the total weight of the egg.  相似文献   

10.
Size variation among propagules is ubiquitous and small initial differences in size can be critical to survival, particularly in taxa where initial survival is variable and strongly size-dependent. Despite this, the sources of size variation among fish at hatching are rarely investigated. This study examined spatial position within egg clutches as a source of size variation at hatching of the benthic spawning fish Amphiprion melanopus. We quantified within-clutch size variation at hatching and found that newly hatched larvae from the periphery (5 mm from edge) of 2-dimensional clutches were smaller in standard length, cranial depth, eye diameter and body area (7%, 8%, 4% and 11%, respectively) than larvae from the interior positions within clutches. To investigate the source of this variation, sizes of embryos at different locations with clutches were measured within 2 h of fertilisation (8 d before hatching). Newly laid embryos from the clutch periphery were smaller in length and volume than embryos from the clutch interior (> 2% and 4-6%, respectively). These eggs from the periphery also had a 33% lower rate of oxygen consumption than did embryos from the clutch interior, throughout development. The relationships between position within a clutch and egg size, oxygen consumption and larval size imply that size variation in larval fish at hatching is partly generated during early embryogenesis, either from maternal endowment or maternal nest design, and was amplified throughout development.  相似文献   

11.
The cardiovascular system is the first system to become functional in a developing animal and must perform key physiological functions even as it develops and grows. The ontogeny of cardiac physiology was studied throughout embryonic and larval developmental stages in the red swamp crayfish Procambarus clarkii using videomicroscopic dimensional analysis. The heart begins to contract by day 13 of development (at 25 degrees C, 20 kPa O(2)). Cardiac output is primarily regulated by changes in heart rate because stroke volume remains relatively constant throughout embryogenesis. Prior to eclosion, heart rate and cardiac output decreased significantly. Previous data suggest that the decrease in cardiac parameters prior to hatching may be due to an oxygen limitation to the embryo. Throughout development, metabolizing mass and embryonic oxygen consumption increased, while egg surface area remained constant. The surface area of the egg membrane is a constraint on gas exchange; this limitation, in combination with the increasing oxygen demand of the embryo, results in an inadequate diffusive supply of oxygen to developing tissues. To determine if the decrease in cardiac function was the result of an internal hypoxia experienced during late embryonic development, early and late-stage embryos were exposed to hyperoxic water (PO(2) = 40 kPa O(2)). Heart rate in late-stage embryos exposed to hyperoxic water increased significantly over control values, which suggests that the suppression in cardiac function observed in late-stage embryos is due to a limited oxygen supply.  相似文献   

12.
The cardiovascular system performs key physiological functions even as it develops and grows. The ontogeny of cardiac physiology was studied throughout embryonic and larval development in the red swamp crayfish Procambarus clarkii using videomicroscopic dimensional analysis. The heart begins to contract by day 13 of development (at 25°C, 20 kPa O2). Prior to eclosion, heart rate (ƒH) decreases significantly. Previous data suggests that the decrease in cardiac parameters prior to hatching may be due to an oxygen limitation of the embryo. Throughout development, metabolizing mass and embryonic oxygen consumption primarily increased while egg surface area remains constant. The limited area for gas exchange of the egg membrane, in combination with the increasing oxygen demand of the embryo could result in an inadequate diffusive supply of oxygen to developing tissues. To determine if the decrease in cardiac function was the result of an internal hypoxia experienced during late embryonic development, early and late stage embryos were exposed to hyperoxic water (PO2 =40 kPa O2). The ƒH in late stage embryos increased significantly over control values when exposed to hyperoxic water suggesting that the suppression in cardiac function observed in late stage embryos is likely due to a limited oxygen supply.  相似文献   

13.
To examine how dormancy contributes to the establishment and persistence of Bythotrephes longimanus, we investigated resting egg production and hatching in relation to the demography of the planktonic stage and environmental conditions in Island Lake Reservoir (USA). During a 3-year study, the largest contribution to the egg bank occurred in autumn and most eggs hatched in spring, but we also detected some resting egg production and hatching in summer. The difference between summer and late autumn densities of eggs in sediments averaged 47% (range 0–98%) for 18 sites throughout the reservoir, which was similar to experimental estimates of in situ hatching fraction of 67% for eggs in the spring and summer following their production. Based on emergence traps, neonates hatch in the field during May and June. We estimated mortality rates of 64% for resting eggs and embryos, and 59% for newly emerged neonates. Although hatching fraction saturated at the same level, eggs incubated offshore hatched later than those nearshore where water temperature was warmer and light was detectable at the sediment surface. Low dissolved oxygen concentration did not significantly reduce hatching fraction but resulted in some eggs that initiated development but failed to hatch. Collectively, our results demonstrate substantial annual turnover in the resting egg bank of B. longimanus and high mortality of resting eggs during recruitment from the egg to the first molt of the planktonic stage. These patterns suggest that propagule pressure in the form of resting eggs requires large numbers for establishment, and that considerable post-establishment resting egg production is necessary for inter-annual persistence.  相似文献   

14.
We measured P(O2) under the shell of avian eggs indirectly, by sealing 0.05 mL glass tubes to the shell, sealing them with mercury and using an oxygen microelectrode to measure the contained gas that equilibrates with the gas in the shell membranes. This technique requires a smaller area of contact with the shell and a shorter equilibration period than established techniques, and allows measurements at several locations simultaneously and over a long period of time without endangering the embryo. P(O2) under the shell of chicken eggs decreased to 14.3 kPa on the day before hatching (day 19). P(O2) was unstable during late development and differences up to 3.1 kPa occurred transiently on opposite sides of the equator. By waxing the shell around sampling tubes, we estimated Krogh's coefficient for lateral oxygen diffusion in the shell membranes at 1.1 mmol cm(-1) d(-1) kPa(-1), a value about a third of a previous estimate. Sampling of gas under sufficiently large regions of waxed shell allowed indirect measurements of chorioallantoic venous P(O2), without affecting embryonic respiration. Venous P(O2) was 3.8 kPa on day 19. Assuming 14.3 kPa represents arterialized blood leaving the chorioallantois, it became possible to calculate the effective chorioallantoic blood flow rate, which was 3.5 mL min(-1) on day 19.  相似文献   

15.
We measured P(O2) under the shell of avian eggs indirectly, by sealing 0.05 mL glass tubes to the shell, sealing them with mercury and using an oxygen microelectrode to measure the contained gas that equilibrates with the gas in the shell membranes. This technique requires a smaller area of contact with the shell and a shorter equilibration period than established techniques, and allows measurements at several locations simultaneously and over a long period of time without endangering the embryo. P(O2) under the shell of chicken eggs decreased to 14.3 kPa on the day before hatching (day 19). P(O2) was unstable during late development and differences up to 3.1 kPa occurred transiently on opposite sides of the equator. By waxing the shell around sampling tubes, we estimated Krogh's coefficient for lateral oxygen diffusion in the shell membranes at 1.1 mmol cm(-1) d(-1) kPa(-1), a value about a third of a previous estimate. Sampling of gas under sufficiently large regions of waxed shell allowed indirect measurements of chorioallantoic venous P(O2), without affecting embryonic respiration. Venous P(O2) was 3.8 kPa on day 19. Assuming 14.3 kPa represents arterialized blood leaving the chorioallantois, it became possible to calculate the effective chorioallantoic blood flow rate, which was 3.5 mL min(-1) on day 19.  相似文献   

16.
As female birds are able to lay no more than a single egg each day, in those species producing larger clutches the first laid eggs may get a developmental head‐start over later eggs in the clutch. All other things being equal, the differential pattern of development across the clutch may contribute to hatching asynchrony and subsequent inequity in the competition between brood mates, and ultimately increase variance in the quality and fitness of first‐ and last‐laid offspring. It has been suggested that females might allocate resources differently across the laying sequence to moderate the developmental rate and hatching time of different embryos. We tested this theory in the Zebra Finch Taeniopygia guttata, a common model species for investigating maternal effects in birds. We removed 758 eggs from 160 nests shortly after they were laid and used artificial incubators to control for parental effects and monitor hatching times. Eggs from larger clutches consistently hatched sooner than those from average‐sized clutches, demonstrating that the intrinsic properties of an egg can alter the developmental time of embryos. There were also differences in the development time of eggs across the laying sequence, but these patterns were weaker, inconsistent and unrelated to sequential investment across the laying sequence in a straightforward way. This study indicates that maternal resource allocation to eggs across the laying sequence and across clutch sizes can influence development times and play a potentially important role in determining the competitive dynamics of broods.  相似文献   

17.
The fertilization mode, and spawning and egg‐care behaviours of the sculpin Radulinopsis taranetzi were investigated in the laboratory. Embryonic development began only after the eggs came into contact with sea water. Females spawned c . 1000 eggs and covered them with sand using their pectoral and caudal fins. Unlike other cottids, the females guarded the egg masses after spawning. During the parental period, the supramaxillary lamina and mandibular lamina of females extended to form a disc‐like structure, which was used to 'suck' water from near the surface of the egg mass. The frequency and duration of this 'sucking' behaviour increased gradually until hatching, which occurred after 23–26 days at 8° C. The oxygen consumption of the embryos was positively related to the 'sucking' activity. All females in this study spawned only once during the spawning season, in contrast with the paternal‐care copulating cottids, which are multiple spawners.  相似文献   

18.
This study examined the role of maternal provisioning in controlling interpopulation variation in hatching size in nine isolated populations of the intertidal gastropod Nucella ostrina, in which development to the early juvenile stage takes place within an egg capsule. Variation among populations was almost entirely due to the ratio of nurse eggs to embryo, which explained 65% of the variation in hatching size. Egg size was not a significant predictor of hatching size. Differences among seven of these populations in the nurse egg/embryo ratio were entirely due to the number of nurse eggs allocated per capsule; these populations allocated different numbers of nurse eggs per capsule but allocated the same number of embryos. Intriguingly, the two most wave-sheltered populations allocated significantly more nurse eggs and more embryos to each capsule than did the seven other populations, but they maintained nurse egg/embryo ratios consistent with patterns observed in the other populations. Inter- and intrapopulation variation in hatching size appears to be controlled largely by different mechanisms: within-population variation being controlled mainly by differences in allocation of embryos per capsule, whereas most among-population variation being due to differences in allocation of nurse eggs per capsule.  相似文献   

19.
1. Readings were made on the rates of oxygen consumption and on the activities of the succinoxidase system of eggs of the mealworm for each day of embryonic development at 30°C. 2. The rate of oxygen consumption, expressed as microliters/50 eggs/hour, was low (4.89) in newly laid eggs. It rose to 7.41 during the next 24 hours, remained at this level for the next 2 days, and then increased during the remainder of the embryonic period reaching a high value of 14.79 at the time of hatching. 3. The activity of cytochrome oxidase in eggs from newly emerged beetles, expressed as Δ log [Cy Fe++]/minute, remained at a value of 0.042 during the first half of the embryonic period, increasing to 0.233 during the latter half of this period. 4. The activity of succinic dehydrogenase showed the same series of changes except at much lower values. Expressed as Δ log [Cy Fe+++]/minute, they ranged from 0.010 in the newly laid egg to 0.034 at the end of the embryonic period. 5. The activity of cytochrome oxidase of the egg was found to decrease with parental age. Eggs from newly emerged beetles had activity values considerably higher than those of beetles 6 or 8 weeks after emergence. However, no comparable changes were noted in the activity of succinic dehydrogenase or in the rate of oxygen consumption. These observations suggest that cytochrome oxidase is not a rate-limiting enzyme in the respiratory metabolism of the mealworm egg.  相似文献   

20.
Encapsulation of developing embryos imposes potential restrictions, because the capsule wall must allow for adequate inward diffusion of oxygen and for increased diffusion of oxygen as metabolic demand increases with continued development. Samples of egg capsules from the gastropod Crepipatella dilatata were used to document surface characteristics, composition of the different capsule wall layers, and alterations in wall thickness during development. The diffusion coefficient and capsule wall permeability were determined experimentally for capsules containing embryos at different developmental stages. We also determined oxygen consumption rates for various embryonic stages and for nurse eggs, which provide food for embryos during development. The capsule wall of C. dilatata possesses 2 differentiated layers: the external capsular wall (ECW) and the internal capsular wall (ICW). The ECW is compact and fibrous, features that remain invariable during development, and lacks surface features that might make some portions of the capsule wall more permeable to oxygen than others. On the other hand, the ICW is initially spongy and thick, but significantly decreases in thickness over time, particularly before the embryos begin feeding on nurse eggs. Although the capsule wall is a serious barrier to diffusion, permeability to oxygen increases over time by 112% due to the dramatic thinning of the inner capsule wall layer. Nurse eggs consume oxygen but at very low rates, supporting the idea that they correspond to living embryonic cells that have stopped their development. Respiration measurements indicated that embryos are initially supplied with enough oxygen within the egg capsules to carry out the activities characteristic of embryogenesis, even though the capsular walls show their maximum thickness and lowest permeability at this time. However, as the embryo develops its velum and becomes more active, capsule wall thickness decreases and capsule permeability to oxygen increases. Correspondingly, the oxygen demands of metamorphosed but still encapsulated specimens are approximately 135% higher than those of pre-metamorphosed sibling embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号