共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown Robert H.; Mitzner Wayne; Bulut Yonca; Wagner Elizabeth M. 《Journal of applied physiology》1997,82(2):491-499
Brown, Robert H., Wayne Mitzner, Yonca Bulut, and ElizabethM. Wagner. Effect of lung inflation in vivo on airways with smoothmuscle tone or edema. J. Appl.Physiol. 82(2): 491-499, 1997.Fibrousattachments to the airway wall and a subpleural surrounding pressurecan create an external load against which airway smooth muscle mustcontract. A decrease in this load has been proposed as a possible causeof increased airway narrowing in asthmatic individuals. To study theinteraction between the airways and the surrounding lung parenchyma, weinvestigated the effect of lung inflation on relaxed airways, airwayscontracted with methacholine, and airways made edematous by infusion ofbradykinin into the bronchial artery. Measurements were made inanesthetized sheep by using high-resolution computed tomography tovisualize changes in individual airways. During methacholine infusion,airway area was decreased but increased minimally with increases intranspulmonary pressure. Bradykinin infusion caused a 50% increase inairway wall area and a small decrease in airway luminal area. Incontrast to airways contracted with methacholine, the luminal areaafter bradykinin increased substantially with increases intranspulmonary pressure, reaching 99% of the relaxed area at totallung capacity. Thus airway edema by itself did not prevent fulldistension of the airway at lung volumes approaching total lungcapacity. Therefore, we speculate that if a deep inspiration fails torelieve airway narrowing in vivo, this must be a manifestation ofairway smooth muscle contraction and not airway wall edema. 相似文献
2.
3.
4.
The influence of pulmonary inflation and positive airway pressure on nasal and pharyngeal resistance were studied in 10 normal subjects lying in an iron lung. Upper airway pressures were measured with two low-bias flow catheters while the subjects breathed by the nose through a Fleish no. 3 pneumotachograph into a spirometer. Resistances were calculated at isoflow rates in four different conditions: exclusive pulmonary inflation, achieved by applying a negative extra-thoracic pressure (NEP); expiratory positive airway pressure (EPAP), which was created by immersion of the expiratory line; continuous positive airway pressure (CPAP), realized by loading the bell of the spirometer; and CPAP without pulmonary inflation by simultaneously applying the same positive extrathoracic pressure (CPAP + PEP). Resistance measurements were obtained at 5- and 10-cmH2O pressure levels. Pharyngeal resistance (Rph) significantly decreased during each measurement; the decreases in nasal resistance were only significant with CPAP and CPAP + PEP; the deepest fall in Rph occurred with CPAP. It reached 70.8 +/- 5.5 and 54.8 +/- 6.5% (SE) of base-line values at 5 and 10 cmH2O, respectively. The changes in lung volume recorded with CPAP + PEP ranged from -180 to 120 ml at 5 cmH2O and from -240 to 120 ml at 10 cmH2O. Resistances tended to increase with CPAP + PEP compared with CPAP values, but these changes were not significant (Rph = 75.9 +/- 6.1 and 59.9 +/- 6.6% at 5 and 10 cmH2O of CPAP + PEP). We conclude that 1) the upper airway patency increases during pulmonary inflation, 2) the main effect of CPAP is related to pneumatic splinting, and 3) pulmonary inflation contributes little to the decrease in upper airways resistance observed with CPAP. 相似文献
5.
A sine quanon of hyperresponsive airway disease in asthmatic subjects is the lackof a maximal response with increasing doses of aerosol agonistchallenge. Normal subjects, however, often appear toexhibit an airway response plateau effect even when challenged withhigh concentrations of agonist. To investigate this question of maximalnarrowing in individual airways in vivo, we used high-resolutioncomputed tomography to visualize canine airways narrowed by two routesof agonist challenge. We compared airway narrowing induced bymethacholine (MCh) via the conventional aerosol route to that caused bylocal atomization of MCh directly to individual airways. Our resultsshowed that, with aerosol challenge, airway responses never reached atruly flat plateau even at the highest possible nebulizerconcentrations. Airway closure was never observed. However, when MChwas delivered directly to the airway luminal surface, airways could beeasily narrowed to complete closure at modest (10 mg/ml) agonistconcentrations. Thus neither the elastic recoil of the lung norlimitations of smooth muscle shortening can be responsible for theapparent plateauing of dose-response curves. We suggest that theplateau results from limitations associated with the delivery of highconcentration of agonists via the aerosol route. 相似文献
6.
Lung inflation, lung solute permeability, and alveolar edema 总被引:7,自引:0,他引:7
7.
Shardonofsky FR Capetanaki Y Boriek AM 《American journal of physiology. Lung cellular and molecular physiology》2006,290(5):L890-L896
Desmin is a structural protein that is expressed in smooth muscle cells of both airways and alveolar ducts. Therefore, desmin could be well situated to participate in passive and contractile force transmission in the lung. We hypothesized that desmin modulates lung compliance, lung recoil pressure, and airway contractile response. To test this hypothesis, respiratory system complex impedance (Zin,rs) at different positive end-expiratory pressure (PEEP) levels and quasi-static pressure-volume data were obtained in desmin-null and wild-type mice at baseline and during methacholine administration. Airways and lung tissue properties were partitioned by fitting Zin,rs to a constant-phase model. Relative to controls, desmin-null mice showed 1) lower values for lung stiffness and recoil pressure at baseline and induced airway constriction, 2) greater negative PEEP dependence of H and airway resistance under baseline conditions and cholinergic stimulation, and 3) airway hyporesponsiveness. These results demonstrate that desmin is a load-bearing protein that stiffens the airways and consequently the lung and modulates airway contractile response. 相似文献
8.
Nasal airway resistance was assessed in halothane-anesthetized rats by measuring the transnasal pressure at constant airflow through both nasal cavities. Low inflation pressures (2.5-5 cmH2O) decreased nasal airway resistance, whereas higher inflation pressures (10-20 cmH2O) caused a biphasic response: an initial increase in resistance followed by a decrease in resistance. The nasal responses to all levels of inflation were completely abolished by hexamethonium, guanethidine, or bretylium pretreatment or cervical sympathectomy and greatly lessened by cervical vagotomy or phenoxybenzamine pretreatment. Atropine and propranolol pretreatments had no effect on the responses. These findings indicate that the nasal airway resistance is related to the level of inflation through pulmonary reflexes with afferents along the vagi and efferents via the alpha-adrenergic nervous system. 相似文献
9.
10.
11.
12.
The influence of lung inflation on lung elasticity and pulmonary resistance (RL) and on pulmonary and bronchial hemodynamics was examined in five anesthetized, mechanically ventilated adult sheep before and after treatment with the cyclooxygenase inhibitor indomethacin (2 mg/kg). Lung inflation was accomplished by increasing levels of positive end-expiratory pressure (PEEP). Measurements of pulmonary vascular resistance (PVR), bronchial blood flow (Qbr), and RL were obtained with a Swan-Ganz catheter, with an electromagnetic flow probe placed around the carinal artery, and by relating airflow to transpulmonary pressure (Ptp), respectively. Before indomethacin, increasing PEEP from 5 to 15 cmH2O increased mean lung volume (VL) to 135% (P less than 0.01), Ptp to 165% (P less than 0.005), and PVR to 132% (P less than 0.05) of base line and decreased mean Qbr (normalized for cardiac output) to 53% (P less than 0.05) of base line. Mean RL showed a tendency to decrease with a mean value of 67% of base line at 15 cmH2O PEEP. After indomethacin the corresponding values were 121% for VL, 155% for Ptp, 124% for PVR, 35% for Qbr, and 31% for RL. The PEEP-dependent changes were not different before and after indomethacin except for mean VL, which increased less (P less than 0.05) after indomethacin. The failure of indomethacin to modify PEEP-induced changes in RL, PVR, and Qbr was also present when these parameters were expressed as a function of Ptp. These findings suggest that the cyclooxygenase products elaborated during lung inflation reduce lung elasticity but fail to influence airflow resistance and pulmonary and bronchial hemodynamics. 相似文献
13.
14.
J C de Jongste H Mons F J Zijlstra K F Kerrebijn 《Prostaglandins, leukotrienes, and essential fatty acids》1988,34(1):31-36
The hypothesis was tested that endogenous leukotriene (LT) production in the lung causes desensitisation of airway smooth muscle to LT. The synthesis of LTB4, C4, D4 and E4 by human lung tissue, obtained at thoracotomies, after stimulation with Ca-ionophore was assessed by HPLC. Functional studies of small airway smooth muscle from the same tissue specimens were carried out using LTC4 and methacholine as the contracting agents. Generation of LTB4, C4, D4 and E4 was 453 +/- 82, 84 +/- 15, 71 +/- 27 and 40 +/- 16 pmol/g fresh tissue respectively (mean +/- S.E.M., n = 10). All airway smooth muscle preparations responded to LTC4 in a concentration dependent way with a -log EC20 of 8.56 +/- 0.13, a -log EC50 of 7.95 +/- 0.08 and a Tmax of 82 +/- 11 mg force/mg tissue weight, corresponding to 79 +/- 4% of the maximal response to methacholine (mean +/- S.E.M.; 27 preparations from 10 patients). No correlations were found between any of the functional parameters (-logEC20, -logEC50, Tmax to LTC4 and methacholine) and the amounts of LT's generated by the lung tissue. Furthermore airway smooth muscle contractility was not significantly reduced after repeated exposure of bronchiolar strips to LTC4 in vitro. These findings suggest that the responsiveness of human peripheral airway smooth muscle to LT is not related to the capacity of the lung tissue to synthetize LT. 相似文献
15.
16.
We studied the effects of leukotriene B4 (LTB4) on guinea pig airway muscle responsiveness in vivo and in vitro. Responsiveness in vivo was assessed by measuring specific airway resistance (SRaw) upon intravenous acetylcholine infusion in 5 unanesthetized, spontaneously breathing guinea pigs. We found that aerosolized LTB4, in a concentration that itself had no effect on baseline SRaw, caused a substantial increase in bronchial reactivity to i.v. ACh within 8 min of its administration. Responsiveness in vitro was assessed by measuring isometric contraction of the guinea pig trachealis upon stimulation by either chemical or electrical field stimuli. These studies in vitro showed that a concentration of LTB4 that itself did not cause contraction, potentiated airway muscle contraction to ACh and KCl, but not to norepinephrine. This effect of LTB4 was substantially reduced by nifedipine. Our data suggests that amounts of LTB4 that are themselves non-contractile in vivo or in vitro, may directly potentiate the responsiveness of airway smooth muscle to other bronchoconstrictors. 相似文献
17.
18.
Riccardo Pellegrino Raffaele Dellaca Peter T Macklem Andrea Aliverti Stefania Bertini Pamela Lotti PierGiuseppe Agostoni Alessandro Locatelli Vito Brusasco 《Journal of applied physiology》2003,95(2):728-734
Lung mechanics and airway responsiveness to methacholine (MCh) were studied in seven volunteers before and after a 20-min intravenous infusion of saline. Data were compared with those of a time point-matched control study. The following parameters were measured: 1-s forced expiratory volume, forced vital capacity, flows at 40% of control forced vital capacity on maximal (Vm(40)) and partial (Vp(40)) forced expiratory maneuvers, lung volumes, lung elastic recoil, lung resistance (Rl), dynamic elastance (Edyn), and within-breath resistance of respiratory system (Rrs). Rl and Edyn were measured during tidal breathing before and for 2 min after a deep inhalation and also at different lung volumes above and below functional residual capacity. Rrs was measured at functional residual capacity and at total lung capacity. Before MCh, saline infusion caused significant decrements of forced expiratory volume in 1 s, Vm(40), and Vp(40), but insignificantly affected lung volumes, elastic recoil, Rl, Edyn, and Rrs at any lung volume. Furthermore, saline infusion was associated with an increased response to MCh, which was not associated with significant changes in the ratio of Vm(40) to Vp(40). In conclusion, mild airflow obstruction and enhanced airway responsiveness were observed after saline, but this was not apparently due to altered elastic properties of the lung or inability of the airways to dilate with deep inhalation. It is speculated that it was likely the result of airway wall edema encroaching on the bronchial lumen. 相似文献
19.
Ciliary responsiveness in allergic and nonallergic airways 总被引:2,自引:0,他引:2
Wanner A.; Sielczak M.; Mella J. F.; Abraham W. M. 《Journal of applied physiology》1986,60(6):1967-1971
Allergic asthma is associated with airway (smooth muscle) hyperresponsiveness to several chemical mediators of anaphylaxis; however, it is not known whether this is accompanied by mucociliary hyperresponsiveness. The purpose of this study was therefore to determine if airway ciliary activity, a component function of mucociliary clearance, exhibits exaggerated responses to prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), and leukotriene D4 (LTD4) in allergic sheep when compared with nonallergic sheep, and the effects of LTD4 are direct or involve the generation of cyclooxygenase products of arachidonate metabolism. Ciliary beat frequency (CBF) was measured in a perfusion chamber with a microscopic technique using tracheal epithelial cells obtained from brushing of "allergic" (positive cutaneous reaction and previous bronchospastic response to inhaled specific antigen) and "nonallergic" (negative cutaneous reaction, no previous inhalation challenge with antigen) sheep. Mean base-line CBF was not different among the groups; PGE1, PGE2, and LTD4 induced dose-dependent increases in CBF, and these increases were not different in allergic and nonallergic sheep. At the highest agonist concentration the mean increase in CBF from base line varied between 13 and 16% (P less than 0.05). The ciliostimulatory effect of LTD4 was significantly blunted by both the sulfidopeptide leukotriene antagonist FPL-55712 and the cyclooxygenase inhibitor indomethacin. These results suggest that allergic sheep fail to exhibit ciliary hyperresponsiveness to selected chemical mediators of anaphylaxis and the ciliostimulatory effect of LTD4 depends on the activation of cyclooxygenase and possibly the generation of prostaglandins. 相似文献
20.
In vivo glucose metabolism in individual tissues of the rat. Interaction between epinephrine and insulin 总被引:11,自引:0,他引:11
The interaction between epinephrine and insulin in modulating in vivo glucose metabolism within individual tissues of the body has not previously been examined. This was investigated using the euglycemic hyperinsulinemic (120 milliunits/liter) clamp combined with administration of [3H]2-deoxyglucose and D-[U-14C]glucose. Epinephrine produced whole body insulin resistance due to increased hepatic glucose output and reduced peripheral glucose disposal. Despite elevated insulin levels liver glycogen content was reduced by 50% during epinephrine infusion (5 nM). However, this effect was transient, occurring predominantly during the initial 60 min of study. These effects were prevented during beta-adrenergic blockade with propranolol and potentiated during alpha 1-adrenergic blockade with prazosin. The most significant effect of epinephrine in peripheral tissues was increased glycogenolysis in both oxidative and glycolytic skeletal muscle. A significant reduction in insulin-mediated [3H]2-deoxyglucose uptake (30%) was evident in 5 of 9 muscles tested during epinephrine infusion. This effect was most pronounced in the more insulin-sensitive oxidative muscles. The latter effect was probably indirectly mediated via increased glycogenolysis--increased accumulation of metabolites--inhibition of hexokinase. In addition, it is evident that insulin-mediated glycogen synthesis occurred during epinephrine infusion. All effects of epinephrine on muscle glucose metabolism were prevented by propranolol but not prazosin. Similar effects to that observed in muscle were not evident in adipose tissue. It is concluded that epinephrine may override many of the actions of insulin in vivo, and most of these effects are mediated via the beta-adrenergic receptor. In the intact rat there may be a complex interaction between alpha- and beta-adrenergic effects in regulating hepatic glucose output. 相似文献