首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During early embryonic cycles, the time required for mitotic spindle assembly must match the autonomous cell cycle oscillations because a lack of coordination between these two processes will result in chromosome segregation errors. Members of the widely conserved BimC kinesin family are essential for spindle formation in all eukaryotes, and complete loss of BimC function results in monopolar spindles that have two spindle poles that are not separated. However, the precise roles of BimC motor activity in the spindle assembly process are not known. To examine the contribution of BimC kinesin's motor activity to spindle assembly, we generated and characterized mutants of Eg5, a vertebrate BimC kinesin, with reduced in vitro microtubule-gliding velocities. In Xenopus egg extracts, we replaced endogenous Eg5 with recombinant wild-type or mutant motor proteins. By using centrosome-dependent and centrosome-independent spindle assembly assays, we found that mechanisms that determine spindle size and shape were robust to approximately 6-fold reductions in Eg5 motility. However, the spindle assembly process was slower when Eg5 motor function was impaired. This role of Eg5 was independent of its contribution to centrosome separation. We provide evidence that Eg5 is a rate-limiting component of the cellular machinery that drives spindle assembly in vertebrates.  相似文献   

2.
Success of mitosis depends upon the coordinated and regulated activity of many cellular factors, including kinesin motor proteins, which are required for the assembly and function of the mitotic spindle. Eg5 is a kinesin implicated in the formation of the bipolar spindle and its movement prior to and during anaphase. We have determined the crystal structure of the Eg5 motor domain with ADP-Mg bound. This structure revealed a new intramolecular binding site of the neck-linker. In other kinesins, the neck-linker has been shown to be a critical mechanical element for force generation. The neck-linker of conventional kinesin is believed to undergo an ordered-to-disordered transition as it translocates along a microtubule. The structure of Eg5 showed an ordered neck-linker conformation in a position never observed previously. The docking of the neck-linker relies upon residues conserved only in the Eg5 subfamily of kinesin motors. Based on this new information, we suggest that the neck-linker of Eg5 may undergo an ordered-to-ordered transition during force production. This ratchet-like mechanism is consistent with the biological activity of Eg5.  相似文献   

3.
The microtubule motor protein kinesin‐5 (Eg5) provides an outward force on centrosomes, which drives bipolar spindle assembly. Acute inhibition of Eg5 blocks centrosome separation and causes mitotic arrest in human cells, making Eg5 an attractive target for anti‐cancer therapy. Using in vitro directed evolution, we show that human cells treated with Eg5 inhibitors can rapidly acquire the ability to divide in the complete absence of Eg5 activity. We have used these Eg5‐independent cells to study alternative mechanisms of centrosome separation. We uncovered a pathway involving nuclear envelope (NE)‐associated dynein that drives centrosome separation in prophase. This NE‐dynein pathway is essential for bipolar spindle assembly in the absence of Eg5, but also functions in the presence of full Eg5 activity, where it pulls individual centrosomes along the NE and acts in concert with Eg5‐dependent outward pushing forces to coordinate prophase centrosome separation. Together, these results reveal how the forces are produced to drive prophase centrosome separation and identify a novel mechanism of resistance to kinesin‐5 inhibitors.  相似文献   

4.
Eg5 or KSP is a homotetrameric Kinesin-5 involved in centrosome separation and assembly of the bipolar mitotic spindle. Analytical gel filtration of purified protein and cryo-electron microscopy (cryo-EM) of unidirectional shadowed microtubule-Eg5 complexes have been used to identify the stable dimer Eg5-513. The motility assays show that Eg5-513 promotes robust plus-end-directed microtubule gliding at a rate similar to that of homotetrameric Eg5 in vitro. Eg5-513 exhibits slow ATP turnover, high affinity for ATP, and a weakened affinity for microtubules when compared to monomeric Eg5. We show here that the Eg5-513 dimer binds microtubules with both heads to two adjacent tubulin heterodimers along the same microtubule protofilament. Under all nucleotide conditions tested, there were no visible structural changes in the monomeric Eg5-microtubule complexes with monastrol treatment. In contrast, there was a substantial monastrol effect on dimeric Eg5-513, which reduced microtubule lattice decoration. Comparisons between the X-ray structures of Eg5-ADP and Eg5-ADP-monastrol with rat kinesin-ADP after docking them into cryo-EM 3-D scaffolds revealed structural evidence for the weaker microtubule-Eg5 interaction in the presence of monastrol.  相似文献   

5.
Lamin B is a component of the membranous spindle matrix isolated from Xenopus egg extracts, and it is required for proper spindle morphogenesis. Besides lamin B, the spindle matrix contains spindle assembly factors (SAFs) such as Eg5 and dynein which are known to regulate microtubule organization and SAFs known to promote microtubule assembly such as Maskin and XMAP215. Because lamin B does not bind directly to microtubules, it must affect spindle morphogenesis indirectly by influencing the function of spindle matrix-associated SAFs. Using different assays in Xenopus egg extracts, we found that depleting lamin B caused formation of elongated and multipolar spindles, which could be reversed by partially inhibiting the kinesin Eg5, revealing an antagonistic relationship between Eg5 and lamin B. However, lamin B only very weakly antagonizes Eg5 in mediating poleward microtubule-flux based on fluorescence speckle microscopy. Depleting lamin B led to a very small but statistically significant increase in flux. Furthermore, flux reduction caused by partial Eg5 inhibition is only slightly reversed by removing lamin B. Because lamin B does not bind to Eg5, our studies suggest two nonexclusive mechanisms by which lamin B can indirectly antagonize Eg5. It could function in a network that restricts Eg5-driven microtubule sliding only when microtubules come into transient contact with the network. Lamin B could also function to sequester microtubule polymerization activities within the spindle. Without lamin B, increased microtubule assembly caused by the released SAFs would lead to excessive microtubule sliding that results in formation of elongated and multipolar spindles.  相似文献   

6.
Despite the high level of similarity in structural organisation of their motor domains and, consequently, in the mechanism of motility generation, kinesin-5 moves about 25-fold slower than conventional kinesin (kinesin-1). To elucidate the structural motifs contributing to velocity regulation, we expressed a set of Eg5- and KIF5A-based chimeric proteins with interchanged native neck linker and neck elements. Among them, the chimera consisting of the Eg5 catalytic core (residues 1-357) fused to the KIF5A linker and neck (residues 326-450) displayed increased velocity compared to the Eg5 control protein. This is the first evidence that the velocity of the slow-moving motor Eg5 can be elevated by insertion of neck linker and neck elements taken from a fast-moving motor. Whereas the complementary chimera composed of the KIF5A core (1-325) and the Eg5 linker and neck (358-513) was found to be immotile, insertion of the first half-KIF5A linker into this chimera restored motility. Our results indicate that the neck linker and the neck are involved not only in motility generation in general and in determination of movement direction, but also in velocity regulation.  相似文献   

7.
Conventional kinesin and Eg5 are essential nanoscale motor proteins. Single-molecule and presteady-state kinetic experiments indicate that both motors use similar strategies to generate movement along microtubules, despite having distinctly different in vivo functions. Single molecules of kinesin, a long-distance cargo transporter, are highly processive, binding the microtubule and taking 100 or more sequential steps at velocities of up to 700 nm/s before dissociating, whereas Eg5, a motor active in mitotic spindle assembly, is also processive, but takes fewer steps at a slower rate. By dissecting the structural, biochemical and mechanical features of these proteins, we hope to learn how kinesin and Eg5 are optimized for their specific biological tasks, while gaining insight into how biochemical energy is converted into mechanical work.  相似文献   

8.
Eg5 is a plus end directed kinesin related motor protein (KRP) previously shown to be involved in the assembly and maintenance of the mitotic spindle. KRPs are molecular motors capable of generating forces upon microtubules (MTs) in dividing cells and driving structural rearrangements necessary in the developing spindle. In vitro experiments demonstrate that loss of Eg5 results in cell cycle arrest and defective centrosome separation resulting in the development of monopolar spindles. Here we describe mice with a genetrap insertion in Eg5. Heterozygous mutant mice appear phenotypically normal. In contrast, embryos homozygous for the Eg5 null allele recovered at embryonic days 2.5-3.5 display signs of a proliferation defect as reduced cell numbers and failure of compaction and progression to the blastocyst stage was observed. These data, in conjunction with previous in vitro data, suggest that loss of Eg5 results in abnormal spindle structure, cell cycle arrest and thereby reduced cell proliferation of early cleavage pre-implantation embryos. These observations further support the conclusion that Eg5 is essential for cell division early in mouse development, and that maternal contribution may sustain the embryo through the maternal to zygotic transition at which point supplies of functional Eg5 are exhausted, preventing further cell cleavage.  相似文献   

9.
Eg5/KSP is a homotetrameric, Kinesin-5 family member whose ability to cross-link microtubules has associated it with mitotic spindle assembly and dynamics for chromosome segregation. Transient-state kinetic methodologies have been used to dissect the mechanochemical cycle of a dimeric motor, Eg5-513, to better understand the cooperative interactions that modulate processive stepping. Microtubule association, ADP release, and ATP binding are all fast steps in the pathway. However, the acid-quench analysis of the kinetics of ATP hydrolysis with substrate in excess of motor was unable to resolve a burst of product formation during the first turnover event. In addition, the kinetics of P(i) release and ATP-promoted microtubule-Eg5 dissociation were observed to be no faster than the rate of ATP hydrolysis. In combination the data suggest that dimeric Eg5 is the first kinesin motor identified to have a rate-limiting ATP hydrolysis step. Furthermore, several lines of evidence implicate alternating-site catalysis as the molecular mechanism underlying dimeric Eg5 processivity. Both mantATP binding and mantADP release transients are biphasic. Analysis of ATP hydrolysis through single turnover assays indicates a surprising substrate concentration dependence, where the observed rate is reduced by half when substrate concentration is sufficiently high to require both motor domains of the dimer to participate in the reaction.  相似文献   

10.
Mitotic spindle assembly requires the regulated activity of numerous spindle-associated proteins. In mammalian cells, the Kinesin-5 motor Eg5 interacts with the spindle assembly factor TPX2, but how this interaction contributes to spindle formation and function is not established. Using bacterial artificial chromosome technology, we generated cells expressing TPX2 lacking the Eg5 interaction domain. Spindles in these cells were highly disorganized with multiple spindle poles. The TPX2-Eg5 interaction was required for kinetochore fiber formation and contributed to Eg5 localization to spindle microtubules but not spindle poles. Microinjection of the Eg5-binding domain of TPX2 resulted in spindle elongation, indicating that the interaction of Eg5 with TPX2 reduces motor activity. Consistent with this possibility, we found that TPX2 reduced the velocity of Eg5-dependent microtubule gliding, inhibited microtubule sliding, and resulted in the accumulation of motor on microtubules. These results establish a novel function of TPX2 in regulating the location and activity of the mitotic motor Eg5.  相似文献   

11.
The microtubule-dependent kinesin-like protein Eg5 from Homo sapiens is involved in the assembly of the mitotic spindle. It shows a three-domain structure with an N-terminal motor domain, a central coiled coil, and a C-terminal tail domain. In vivo HsEg5 is reversibly inhibited by monastrol, a small cell-permeable molecule that causes cells to be arrested in mitosis. Both monomeric and dimeric Eg5 constructs have been examined in order to define the minimal monastrol binding domain on HsEg5. NMR relaxation experiments show that monastrol interacts with all of the Eg5 constructs used in this study. Enzymatic techniques indicate that monastrol partially inhibits Eg5 ATPase activity by binding directly to the motor domain. The binding is noncompetitive with respect to microtubules, indicating that monastrol does not interfere with the formation of the motor-MT complex. The binding is not competitive with respect to ATP. Both enzymology and in vivo assays show that the S enantiomer of monastrol is more active than the R enantiomer and racemic monastrol. Stopped-flow fluorometry indicates that monastrol inhibits ADP release by forming an Eg5-ADP-monastrol ternary complex. Monastrol reversibly inhibits the motility of human Eg5. Monastrol has no inhibitory effect on the following members of the kinesin superfamily: MC5 (Drosophila melanogaster Ncd), HK379 (H. sapiens conventional kinesin), DKH392 (D. melanogaster conventional kinesin), BimC1-428 (Aspergillus nidulans BimC), Klp15 (Caenorhabditis elegans C-terminal motor), or Nkin460GST (Neurospora crassa conventional kinesin).  相似文献   

12.
Controlled activity of several kinesin motors is required for the proper assembly of the mitotic spindle. Eg5, a homotetrameric bipolar kinesin-5 from Xenopus laevis, can cross-link and slide anti-parallel microtubules apart by a motility mechanism comprising diffusional and directional modes. How this mechanism is regulated, possibly by the tail domains of the opposing motors, is poorly understood. In order to explore the basic unregulated kinesin-5 motor activity, we generated a stably dimeric kinesin-5 construct, Eg5Kin, consisting of the motor domain and neck linker of Eg5 and the neck coiled coil of Drosophila melanogaster kinesin-1 (DmKHC). In single-molecule motility assays, we found this chimera to be highly processive. In addition, we studied the effect of the kinesin-5-specific inhibitor monastrol using single-molecule fluorescence assays. We found that monastrol reduced the length of processive runs, but strikingly did not affect velocity. Quantitative analysis of monastrol dose dependence suggests that two bound monastrol molecules are required to be bound to an Eg5Kin dimer to terminate a run.  相似文献   

13.
Monastrol, a cell-permeable small molecule inhibitor of the mitotic kinesin, Eg5, arrests cells in mitosis with monoastral spindles. Here, we use monastrol to probe mitotic mechanisms. We find that monastrol does not inhibit progression through S and G2 phases of the cell cycle or centrosome duplication. The mitotic arrest due to monastrol is also rapidly reversible. Chromosomes in monastrol-treated cells frequently have both sister kinetochores attached to microtubules extending to the center of the monoaster (syntelic orientation). Mitotic arrest-deficient protein 2 (Mad2) localizes to a subset of kinetochores, suggesting the activation of the spindle assembly checkpoint in these cells. Mad2 localizes to some kinetochores that have attached microtubules in monastrol-treated cells, indicating that kinetochore microtubule attachment alone may not satisfy the spindle assembly checkpoint. Monastrol also inhibits bipolar spindle formation in Xenopus egg extracts. However, it does not prevent the targeting of Eg5 to the monoastral spindles that form. Imaging bipolar spindles disassembling in the presence of monastrol allowed direct observations of outward directed forces in the spindle, orthogonal to the pole-to-pole axis. Monastrol is thus a useful tool to study mitotic processes, detection and correction of chromosome malorientation, and contributions of Eg5 to spindle assembly and maintenance.  相似文献   

14.
Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that altered microtubule assembly (nocodazole), eliminated kinetochore-microtubule attachment (loss of Nuf2), or stabilized microtubule plus ends at kinetochores (loss of MCAK). Thus, two KinI motors, MCAK and Kif2a, play distinct roles in mitosis, and MCAK activity at kinetochores must be balanced by Kif2a activity at poles for spindle bipolarity. These treatments failed to restore bipolarity to cells lacking the activity of the kinesin Eg5. Thus, two independent pathways contribute to spindle bipolarity, with the Eg5-dependent pathway using motor force to drive spindle bipolarity and the Kif2a-dependent pathway relying on microtubule polymer dynamics to generate force for spindle bipolarity.  相似文献   

15.
Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: k(cat) = 5.5 s(-1), K(1/2,Mt) = 0.7 microm, and K(m,ATP) = 25 microm; and for Eg5-437: k(cat) = 2.9 s(-1), K(1/2,Mt) = 4.5 microm, and K(m,ATP) = 19 microm. 2'(3')-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 microm(-1)s(-1), followed immediately by ATP hydrolysis at 15 s(-1). ATP-dependent Mt.Eg5 dissociation was relatively slow and rate-limiting at 8 s(-1) with mantADP release at 40 s(-1). Surprisingly, Eg5-367 binds microtubules more effectively (11 microm(-1)s(-1)) than Eg5-437 (0.7 microm(-1)s(-1)), consistent with the steady-state K(1/2,Mt) and the mantADP release K(1/2,Mt). These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover.  相似文献   

16.
We used fluorescent speckle microscopy to probe the dynamics of the mitotic kinesin Eg5 in Xenopus extract spindles, and compared them to microtubule dynamics. We found significant populations of Eg5 that were static over several seconds while microtubules flux towards spindle poles. Eg5 dynamics are frozen by adenylimidodiphosphate. Bulk turnover experiments showed that Eg5 can exchange between the spindle and the extract with a half life of <55 s. Eg5 distribution in spindles was not perturbed by inhibition of its motor activity with monastrol, but was perturbed by inhibition of dynactin with p50 dynamitin. We interpret these data as revealing the existence of a static spindle matrix that promotes Eg5 targeting to spindles, and transient immobilization of Eg5 within spindles. We discuss alternative interpretations of the Eg5 dynamics we observe, ideas for the biochemical nature of a spindle matrix, and implications for Eg5 function.  相似文献   

17.
Taxanes are powerful chemotherapy agents that target the microtubule cytoskeleton, leading to mitotic arrest and cell death; however, their clinical efficacy has been hampered due to the development of drug resistance. Therefore, other proteins involved in spindle assembly are being examined as potential targets for anticancer therapy. The mitotic kinesin, Eg5 is critical for proper spindle assembly; as such, inhibition of Eg5 leads to mitotic arrest making it a potential anticancer target. We wanted to validate Eg5 as a therapeutic target and determine if Eg5 inhibitors retain activity in Taxol-resistant cells. Using affinity chromatography we first show that the compound HR22C16 is an Eg5 inhibitor and does not interact with other microtubule motor proteins tested. Furthermore, HR22C16 along with its analogs, inhibit cell survival in both Taxol-sensitive and -resistant ovarian cancer cells with at least 15-fold greater efficacy than monastrol, the first generation Eg5 inhibitor. Further analysis with HR22C16-A1, the most potent HR22C16 analog, showed that it retains efficacy in PgP-overexpressing cells, suggesting that it is not a PgP substrate. We further show that HR22C16-A1 induces cell death following mitotic arrest via the intrinsic apoptotic pathway. Interestingly, the combination of HR22C16-A1 with Taxol results in an antagonistic antiproliferative and antimitotic effect, possibly due to the abrogation of Taxol-induced mitotic spindles by HR22C16-A1. Taken together, our results show that Eg5 inhibitors have promising anticancer activity and can be potentially used to overcome Taxol resistance in the clinical setting.  相似文献   

18.
Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.  相似文献   

19.
20.
The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr72) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr72, we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr72 does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr72 regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号